Wen Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3265746/publications.pdf

Version: 2024-02-01

172207 288905 3,671 42 29 40 h-index citations g-index papers 43 43 43 3598 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural Design Variations in Beetle Elytra. Advanced Functional Materials, 2021, 31, 2106468.	7.8	12
2	Structural Design Variations in Beetle Elytra (Adv. Funct. Mater. 50/2021). Advanced Functional Materials, 2021, 31, .	7.8	0
3	On the Strength of Hair across Species. Matter, 2020, 2, 136-149.	5.0	18
4	On the gular sac tissue of the brown pelican: Structural characterization and mechanical properties. Acta Biomaterialia, 2020, 118, 161-181.	4.1	3
5	Structure and Mechanical Adaptability of a Modern Elasmoid Fish Scale from the Common Carp. Matter, 2020, 3, 842-863.	5.0	47
6	Active defense mechanisms of thorny catfish. Materials Today, 2020, 38, 35-48.	8.3	8
7	The toughness of porcine skin: Quantitative measurements and microstructural characterization. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 109, 103848.	1.5	14
8	Hyperelastic phase-field fracture mechanics modeling of the toughening induced by Bouligand structures in natural materials. Journal of the Mechanics and Physics of Solids, 2019, 131, 204-220.	2.3	50
9	Arapaima Fish Scale: One of the Toughest Flexible Biological Materials. Matter, 2019, 1, 1557-1566.	5.0	40
10	Tensile behavior and structural characterization of pig dermis. Acta Biomaterialia, 2019, 86, 77-95.	4.1	64
11	How Water Can Affect Keratin: Hydrationâ€Driven Recovery of Bighorn Sheep (Ovis Canadensis) Horns. Advanced Functional Materials, 2019, 29, 1901077.	7.8	29
12	A natural energy absorbent polymer composite: The equine hoof wall. Acta Biomaterialia, 2019, 90, 267-277.	4.1	47
13	Structural architectures with toughening mechanisms in Nature: A review of the materials science of Type-I collagenous materials. Progress in Materials Science, 2019, 103, 425-483.	16.0	78
14	Novel Defense Mechanisms in the Armor of the Scales of the "Living Fossil―Coelacanth Fish. Advanced Functional Materials, 2018, 28, 1804237.	7.8	61
15	Structural characterization and viscoelastic constitutive modeling of skin. Acta Biomaterialia, 2017, 53, 460-469.	4.1	44
16	Structure and mechanical behavior of human hair. Materials Science and Engineering C, 2017, 73, 152-163.	3.8	112
17	Viscoelastic properties of α-keratin fibers in hair. Acta Biomaterialia, 2017, 64, 15-28.	4.1	28
18	A comparative study of piscine defense: The scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 73, 1-16.	1.5	52

#	Article	IF	CITATIONS
19	Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales. Acta Biomaterialia, 2016, 41, 60-74.	4.1	109
20	Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Progress in Materials Science, 2016, 76, 229-318.	16.0	571
21	A Sustainable Substitute for Ivory: the Jarina Seed from the Amazon. Scientific Reports, 2015, 5, 14387.	1.6	12
22	The materials science of collagen. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 52, 22-50.	1.5	227
23	The armored carapace of the boxfish. Acta Biomaterialia, 2015, 23, 1-10.	4.1	63
24	On the tear resistance of skin. Nature Communications, 2015, 6, 6649.	5.8	297
25	Leatherback sea turtle shell: A tough and flexible biological design. Acta Biomaterialia, 2015, 28, 2-12.	4.1	84
26	Biological Selfâ€Arrangement of Fiber Like Aragonite and Its Effect on Mechanical Behavior of <i>Veined rapa whelk</i> Shell. Journal of the American Ceramic Society, 2015, 98, 3319-3325.	1.9	23
27	Alligator osteoderms: Mechanical behavior and hierarchical structure. Materials Science and Engineering C, 2014, 35, 441-448.	3.8	39
28	Protective role of Arapaima gigas fish scales: Structure and mechanical behavior. Acta Biomaterialia, 2014, 10, 3599-3614.	4.1	161
29	Structure and fracture resistance of alligator gar (Atractosteus spatula) armored fish scales. Acta Biomaterialia, 2013, 9, 5876-5889.	4.1	116
30	Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nature Communications, 2013, 4, 2634.	5.8	277
31	Axial compression of a hollow cylinder filled with foam: A study of porcupine quills. Acta Biomaterialia, 2013, 9, 5297-5304.	4.1	46
32	Separating the influence of the cortex and foam on the mechanical properties of porcupine quills. Acta Biomaterialia, 2013, 9, 9065-9074.	4.1	48
33	Natural Flexible Dermal Armor. Advanced Materials, 2013, 25, 31-48.	11.1	327
34	Comparisons of Microstructures and Hardness Distribution between Clinocardium Californiense and Veined Rapa Whelk Shells. Key Engineering Materials, 2013, 544, 295-298.	0.4	3
35	Predation versus protection: Fish teeth and scales evaluated by nanoindentation. Journal of Materials Research, 2012, 27, 100-112.	1.2	83
36	The Structure, Functions, and Mechanical Properties of Keratin. Jom, 2012, 64, 449-468.	0.9	266

#	Article	IF	CITATION
37	Flexible Dermal Armor in Nature. Jom, 2012, 64, 475-485.	0.9	41
38	Microstructural Characterization and Hardness Behavior of a Biological Saxidomus purpuratus Shell. Journal of Materials Science and Technology, 2011, 27, 139-146.	5.6	39
39	Structure and mechanical properties of Saxidomus purpuratus biological shells. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1514-1530.	1.5	61
40	Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus). Materials Science and Engineering C, 2011, 31, 724-729.	3.8	64
41	Mechanical Characterizations of <i>Saxidomus purpuratus</i> Shells. Key Engineering Materials, 0, 434-435, 601-604.	0.4	4
42	Arapaima Fish Scale: One of the Toughest Flexible Biological Materials. SSRN Electronic Journal, 0, , .	0.4	2