Joost G J Hoenderop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3265480/publications.pdf

Version: 2024-02-01

243 papers

16,316 citations

64 h-index

16411

19136 118 g-index

247 all docs

247 docs citations

times ranked

247

10315 citing authors

#	Article	IF	CITATIONS
1	Magnesium in Man: Implications for Health and Disease. Physiological Reviews, 2015, 95, 1-46.	13.1	1,099
2	Calcium Absorption Across Epithelia. Physiological Reviews, 2005, 85, 373-422.	13.1	746
3	TRPM6 Forms the Mg2+ Influx Channel Involved in Intestinal and Renal Mg2+ Absorption. Journal of Biological Chemistry, 2004, 279, 19-25.	1.6	552
4	Molecular Identification of the Apical Ca2+Channel in 1,25-Dihydroxyvitamin D3-responsive Epithelia. Journal of Biological Chemistry, 1999, 274, 8375-8378.	1.6	534
5	Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. Journal of Clinical Investigation, 2005, 115, 1651-1658.	3.9	410
6	Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. Journal of Clinical Investigation, 2003, 112, 1906-1914.	3.9	406
7	Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. American Journal of Physiology - Renal Physiology, 2001, 281, F1021-F1027.	1.3	297
8	Permeation and Gating Properties of the Novel Epithelial Ca2+ Channel. Journal of Biological Chemistry, 2000, 275, 3963-3969.	1.6	288
9	Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex. EMBO Journal, 2003, 22, 1478-1487.	3.5	253
10	Modulation of renal Ca2+transport protein genes by dietary Ca2+and 1,25â€dihydroxyvitamin D3in 25hydroxyvitamin D3â€1αâ€hydroxylase knockout mice. FASEB Journal, 2002, 16, 1398-1406.	0.2	228
11	Molecular Mechanism of Active Ca2+Reabsorption in the Distal Nephron. Annual Review of Physiology, 2002, 64, 529-549.	5.6	221
12	Calcitriol Controls the Epithelial Calcium Channel in Kidney. Journal of the American Society of Nephrology: JASN, 2001, 12, 1342-1349.	3.0	220
13	Hypomagnesemia in Type 2 Diabetes: A Vicious Circle?. Diabetes, 2016, 65, 3-13.	0.3	217
14	CaT1 and the Calcium Release-activated Calcium Channel Manifest Distinct Pore Properties. Journal of Biological Chemistry, 2001, 276, 47767-47770.	1.6	212
15	Altered Renal Distal Tubule Structure and Renal Na+ and Ca2+ Handling in a Mouse Model for Gitelman's Syndrome. Journal of the American Society of Nephrology: JASN, 2004, 15, 2276-2288.	3.0	205
16	Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. Journal of Clinical Investigation, 2003, 112, 1906-1914.	3.9	202
17	Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncology, The, 2007, 8, 387-394.	5.1	200
18	Localization of the Epithelial Ca2+ Channel in Rabbit Kidney and Intestine. Journal of the American Society of Nephrology: JASN, 2000, 11, 1171-1178.	3.0	196

#	Article	IF	CITATIONS
19	The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation. Cell Calcium, 2003, 33, 497-507.	1.1	187
20	Localization and Regulation of the Epithelial Ca2+ Channel TRPV6 in the Kidney. Journal of the American Society of Nephrology: JASN, 2003, 14, 2731-2740.	3.0	185
21	Angiotensin II Contributes to Podocyte Injury by Increasing TRPC6 Expression via an NFAT-Mediated Positive Feedback Signaling Pathway. American Journal of Pathology, 2011, 179, 1719-1732.	1.9	180
22	Coordinated control of renal Ca2+ transport proteins by parathyroid hormone. Kidney International, 2005, 68, 1708-1721.	2.6	179
23	Downregulation of Ca2+ and Mg2+ Transport Proteins in the Kidney Explains Tacrolimus (FK506)-Induced Hypercalciuria and Hypomagnesemia. Journal of the American Society of Nephrology: JASN, 2004, 15, 549-557.	3.0	169
24	The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17507-17512.	3.3	164
25	The Single Pore Residue Asp542 Determines Ca2+ Permeation and Mg2+ Block of the Epithelial Ca2+ Channel. Journal of Biological Chemistry, 2001, 276, 1020-1025.	1.6	161
26	Epithelial Ca2+ and Mg2+ Channels in Health and Disease. Journal of the American Society of Nephrology: JASN, 2005, 16, 15-26.	3.0	160
27	Regulation of the epithelial Ca ² ⁺ channels in small intestine as studied by quantitative mRNA detection. American Journal of Physiology - Renal Physiology, 2003, 285, G78-G85.	1.6	155
28	Whole ell and single channel monovalent cation currents through the novel rabbit epithelial Ca 2+ channel ECaC. Journal of Physiology, 2000, 527, 239-248.	1.3	145
29	Acid-Base Status Determines the Renal Expression of Ca2+ and Mg2+ Transport Proteins. Journal of the American Society of Nephrology: JASN, 2006, 17, 617-626.	3.0	142
30	Parathyroid Hormone Activates TRPV5 via PKA-Dependent Phosphorylation. Journal of the American Society of Nephrology: JASN, 2009, 20, 1693-1704.	3.0	142
31	1,25-Dihydroxyvitamin D3-Independent Stimulatory Effect of Estrogen on the Expression of ECaC1 in the Kidney. Journal of the American Society of Nephrology: JASN, 2002, 13, 2102-2109.	3.0	132
32	Regulation of the Mouse Epithelial Ca2+ Channel TRPV6 by the Ca2+-sensor Calmodulin. Journal of Biological Chemistry, 2004, 279, 28855-28861.	1.6	126
33	The role of transient receptor potential channels in kidney disease. Nature Reviews Nephrology, 2009, 5, 441-449.	4.1	125
34	Regulation of magnesium balance: lessons learned from human genetic disease. CKJ: Clinical Kidney Journal, 2012, 5, i15-i24.	1.4	123
35	Direct Interaction with Rab $11a$ Targets the Epithelial Ca $2+$ Channels TRPV5 and TRPV6 to the Plasma Membrane. Molecular and Cellular Biology, 2006, 26, 303-312.	1.1	120
36	CNNM2 Mutations Cause Impaired Brain Development and Seizures in Patients with Hypomagnesemia. PLoS Genetics, 2014, 10, e1004267.	1.5	118

#	Article	IF	CITATIONS
37	TRPV5 and TRPV6 in Ca2+ (re)absorption: regulating Ca2+ entry at the gate. Pflugers Archiv European Journal of Physiology, 2005, 451, 181-192.	1.3	111
38	Active Ca2+ reabsorption in the connecting tubule. Pflugers Archiv European Journal of Physiology, 2009, 458, 99-109.	1.3	108
39	Thiazide-induced hypocalciuria is accompanied by a decreased expression of Ca2+ transport proteins in kidney. Kidney International, 2003, 64, 555-564.	2.6	107
40	Pharmacological modulation of monovalent cation currents through the epithelial Ca2+ channel ECaC1. British Journal of Pharmacology, 2001, 134, 453-462.	2.7	106
41	The Epithelial Calcium Channel, ECaC, Is Activated by Hyperpolarization and Regulated by Cytosolic Calcium. Biochemical and Biophysical Research Communications, 1999, 261, 488-492.	1.0	104
42	Prednisolone-induced Ca2+ malabsorption is caused by diminished expression of the epithelial Ca2+ channel TRPV6. American Journal of Physiology - Renal Physiology, 2007, 292, G92-G97.	1.6	99
43	Epidermal Growth Factor Receptor Signaling in the Kidney. Hypertension, 2008, 52, 987-993.	1.3	94
44	Fast and Slow Inactivation Kinetics of the Ca2+Channels ECaC1 and ECaC2 (TRPV5 and TRPV6). Journal of Biological Chemistry, 2002, 277, 30852-30858.	1.6	92
45	Epithelial calcium channels: from identification to function and regulation. Pflugers Archiv European Journal of Physiology, 2003, 446, 304-308.	1.3	90
46	Regulation of TRPV5 and TRPV6 by associated proteins. American Journal of Physiology - Renal Physiology, 2006, 290, F1295-F1302.	1.3	87
47	Calciotropic and Magnesiotropic TRP Channels. Physiology, 2008, 23, 32-40.	1.6	87
48	Membrane Topology and Intracellular Processing of Cyclin M2 (CNNM2). Journal of Biological Chemistry, 2012, 287, 13644-13655.	1.6	86
49	Toward a comprehensive molecular model of active calcium reabsorption. American Journal of Physiology - Renal Physiology, 2000, 278, F352-F360.	1.3	85
50	Hypervitaminosis D Mediates Compensatory Ca2+ Hyperabsorption in TRPV5 Knockout Mice. Journal of the American Society of Nephrology: JASN, 2005, 16, 3188-3195.	3.0	85
51	Molecular basis of epithelial Ca ²⁺ and Mg ²⁺ transport: insights from the TRP channel family. Journal of Physiology, 2011, 589, 1535-1542.	1.3	84
52	The epithelial calcium channels TRPV5 and TRPV6: regulation and implications for disease. Naunyn-Schmiedeberg's Archives of Pharmacology, 2005, 371, 295-306.	1.4	83
53	Activation of the Ca2+-sensing receptor stimulates the activity of the epithelial Ca2+ channel TRPV5. Cell Calcium, 2009, 45, 331-339.	1.1	82
54	Magnesium prevents vascular calcification in vitro by inhibition of hydroxyapatite crystal formation. Scientific Reports, 2018, 8, 2069.	1.6	82

#	Article	IF	Citations
55	Molecular Determinants in TRPV5 Channel Assembly. Journal of Biological Chemistry, 2004, 279, 54304-54311.	1.6	79
56	TRPV5: an ingeniously controlled calcium channel. Kidney International, 2008, 74, 1241-1246.	2.6	76
57	Laboratory aspects of circulating Â-Klotho. Nephrology Dialysis Transplantation, 2013, 28, 2283-2287.	0.4	75
58	Pore properties and ionic block of the rabbit epithelial calcium channel expressed in HEK 293 cells. Journal of Physiology, 2001, 530, 183-191.	1.3	73
59	Transient Receptor Potential Melastatin 6 Knockout Mice Are Lethal whereas Heterozygous Deletion Results in Mild Hypomagnesemia. Nephron Physiology, 2011, 117, p11-p19.	1.5	72
60	Gene Structure and Chromosomal Mapping of Human Epithelial Calcium Channel. Biochemical and Biophysical Research Communications, 2000, 275, 47-52.	1.0	71
61	Tissue kallikrein stimulates Ca2+ reabsorption via PKC-dependent plasma membrane accumulation of TRPV5. EMBO Journal, 2006, 25, 4707-4716.	3.5	71
62	Methionine Sulfoxide Reductase B1 (MsrB1) Recovers TRPM6 Channel Activity during Oxidative Stress. Journal of Biological Chemistry, 2010, 285, 26081-26087.	1.6	71
63	(Patho)physiological implications of the novel epithelial Ca2+ channels TRPV5 and TRPV6. Pflugers Archiv European Journal of Physiology, 2003, 446, 401-409.	1.3	70
64	Hormone-stimulated Ca2+ reabsorption in rabbit kidney cortical collecting system is cAMP-independent and involves a phorbol ester-insensitive PKC isotype. Kidney International, 1999, 55, 225-233.	2.6	68
65	Mutations in PCBD1 Cause Hypomagnesemia and Renal Magnesium Wasting. Journal of the American Society of Nephrology: JASN, 2014, 25, 574-586.	3.0	68
66	RACK1 Inhibits TRPM6 Activity via Phosphorylation of the Fused α-Kinase Domain. Current Biology, 2008, 18, 168-176.	1.8	67
67	80K-H as a New Ca2+ Sensor Regulating the Activity of the Epithelial Ca2+ Channel Transient Receptor Potential Cation Channel V5 (TRPV5). Journal of Biological Chemistry, 2004, 279, 26351-26357.	1.6	65
68	TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 883-893.	1.9	65
69	HNF-1B specifically regulates the transcription of the \hat{I}^3 a-subunit of the Na+/K+-ATPase. Biochemical and Biophysical Research Communications, 2011, 404, 284-290.	1.0	64
70	Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins. Kidney International, 2010, 77, 601-608.	2.6	63
71	Glucose Specifically Regulates TRPC6 Expression in the Podocyte in an Angll-Dependent Manner. American Journal of Pathology, 2014, 184, 1715-1726.	1.9	62
72	New molecular players facilitating Mg2+ reabsorption in the distal convoluted tubule. Kidney International, 2010, 77, 17-22.	2.6	61

#	Article	lF	Citations
73	TRP channels in kidney disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 928-936.	1.8	60
74	Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D3- $1\hat{1}_{\pm}$ -hydroxylase knockout mice. Kidney International, 2004, 65, 531-539.	2.6	59
75	Functional TRPV6 channels are crucial for transepithelial Ca ²⁺ absorption. American Journal of Physiology - Renal Physiology, 2012, 303, G879-G885.	1.6	59
76	Determinants of hypomagnesemia in patients with type 2 diabetes mellitus. European Journal of Endocrinology, 2017, 176, 11-19.	1.9	59
77	ECaC: the gatekeeper of transepithelial Ca2+ transport. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2002, 1600, 6-11.	1.1	58
78	Drug-induced alterations in Mg2+ homoeostasis. Clinical Science, 2012, 123, 1-14.	1.8	58
79	The carboxyl terminus of the epithelial Ca2+ channel ECaC1 is involved in Ca2+-dependent inactivation. Pflugers Archiv European Journal of Physiology, 2003, 445, 584-588.	1.3	56
80	Tissue Kallikrein–Deficient Mice Display a Defect in Renal Tubular Calcium Absorption. Journal of the American Society of Nephrology: JASN, 2005, 16, 3602-3610.	3.0	54
81	Comparing Approaches to Normalize, Quantify, and Characterize Urinary Extracellular Vesicles. Journal of the American Society of Nephrology: JASN, 2021, 32, 1210-1226.	3.0	53
82	Age-dependent alterations in Ca2+ homeostasis: role of TRPV5 and TRPV6. American Journal of Physiology - Renal Physiology, 2006, 291, F1177-F1183.	1.3	52
83	A Novel Hypokalemic-Alkalotic Salt-Losing Tubulopathy in Patients with CLDN10 Mutations. Journal of the American Society of Nephrology: JASN, 2017, 28, 3118-3128.	3.0	52
84	Modulation of the epithelial Ca 2+ channel ECaC by extracellular pH. Pflugers Archiv European Journal of Physiology, 2001, 442, 237-242.	1.3	51
85	Regulation of the epithelial Ca2+ channels TRPV5 and TRPV6 by $1\hat{l}\pm,25$ -dihydroxy Vitamin D3 and dietary Ca2+. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 303-308.	1.2	51
86	Recurrent FXYD2 p.Gly41Arg mutation in patients with isolated dominant hypomagnesaemia. Nephrology Dialysis Transplantation, 2015, 30, 952-957.	0.4	51
87	Functional Analysis of the Kv1.1 N255D Mutation Associated with Autosomal Dominant Hypomagnesemia. Journal of Biological Chemistry, 2010, 285, 171-178.	1.6	50
88	Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter. Pflugers Archiv European Journal of Physiology, 2013, 465, 1701-1714.	1.3	50
89	Cisplatin-induced injury of the renal distal convoluted tubule is associated with hypomagnesaemia in mice. Nephrology Dialysis Transplantation, 2013, 28, 879-889.	0.4	50
90	Identification of SLC41A3 as a novel player in magnesium homeostasis. Scientific Reports, 2016, 6, 28565.	1.6	50

#	Article	IF	CITATIONS
91	Magnesium prevents vascular calcification inÂKlotho deficiency. Kidney International, 2020, 97, 487-501.	2.6	50
92	A molecular update on pseudohypoaldosteronism type II. American Journal of Physiology - Renal Physiology, 2013, 305, F1513-F1520.	1.3	49
93	Effects of vitamin D compounds on renal and intestinal Ca2+ transport proteins in 25-hydroxyvitamin D3-1α-hydroxylase knockout mice1. Kidney International, 2004, 66, 1082-1089.	2.6	48
94	Role of the α-Kinase Domain in Transient Receptor Potential Melastatin 6 Channel and Regulation by Intracellular ATP. Journal of Biological Chemistry, 2008, 283, 19999-20007.	1.6	48
95	New TRPC6 gain-of-function mutation in a non-consanguineous Dutch family with late-onset focal segmental glomerulosclerosis. Nephrology Dialysis Transplantation, 2013, 28, 1830-1838.	0.4	47
96	Segmental transport of Ca ²⁺ and Mg ²⁺ along the gastrointestinal tract. American Journal of Physiology - Renal Physiology, 2015, 308, G206-G216.	1.6	47
97	Recent advances in renal tubular calcium reabsorption. Current Opinion in Nephrology and Hypertension, 2006, 15, 524-529.	1.0	46
98	Elucidation of the distal convoluted tubule transcriptome identifies new candidate genes involved in renal Mg ²⁺ handling. American Journal of Physiology - Renal Physiology, 2013, 305, F1563-F1573.	1.3	46
99	Hypomagnesemia as First Clinical Manifestation of ADTKD-HNF1B: A Case Series and Literature Review. American Journal of Nephrology, 2015, 42, 85-90.	1.4	46
100	Shedding of klotho by ADAMs in the kidney. American Journal of Physiology - Renal Physiology, 2015, 309, F359-F368.	1.3	46
101	Sensing mechanisms involved in Ca2+ and Mg2+ homeostasis. Kidney International, 2012, 82, 1157-1166.	2.6	45
102	Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane. Acta Biomaterialia, 2015, 14, 22-32.	4.1	45
103	Vitamin D Down-Regulates TRPC6 Expression in Podocyte Injury and Proteinuric Glomerular Disease. American Journal of Pathology, 2013, 182, 1196-1204.	1.9	44
104	Uromodulin regulates renal magnesium homeostasis through the ion channel transient receptor potential melastatin 6 (TRPM6). Journal of Biological Chemistry, 2018, 293, 16488-16502.	1.6	43
105	Calciprotein particle inhibition explains magnesium-mediated protection against vascular calcification. Nephrology Dialysis Transplantation, 2020, 35, 765-773.	0.4	43
106	Epithelial Ca2+ channel (ECAC1) in autosomal dominant idiopathic hypercalciuria. Nephrology Dialysis Transplantation, 2002, 17, 1614-1620.	0.4	42
107	Structural analysis of calmodulin binding to ion channels demonstrates the role of its plasticity in regulation. Pflugers Archiv European Journal of Physiology, 2013, 465, 1507-1519.	1.3	42
108	The Epithelial Calcium Channel TRPV5 Is Regulated Differentially by Klotho and Sialidase. Journal of Biological Chemistry, 2013, 288, 29238-29246.	1.6	42

#	Article	lF	CITATIONS
109	Epithelial calcium channel: gate-keeper of active calcium reabsorption. Current Opinion in Nephrology and Hypertension, 2000, 9, 335-340.	1.0	41
110	Murine TNFÎ"ARE CrohnÊ $\frac{1}{4}$ s disease model displays diminished expression of intestinal Ca2+ transporters. Inflammatory Bowel Diseases, 2008, 14, 803-811.	0.9	41
111	Loss of transcriptional activation of the potassium channel Kir $5.1~by~HNF1\hat{l}^2~drives~autosomal~dominant~tubulointerstitial~kidney~disease.~Kidney~International,~2017,~92,~1145-1156.$	2.6	41
112	Sensing of tubular flow and renal electrolyte transport. Nature Reviews Nephrology, 2020, 16, 337-351.	4.1	41
113	The rise and fall of novel renal magnesium transporters. American Journal of Physiology - Renal Physiology, 2018, 314, F1027-F1033.	1.3	40
114	Inhibition of PRL-2Â-CNNM3 Protein Complex Formation Decreases Breast Cancer Proliferation and Tumor Growth. Journal of Biological Chemistry, 2016, 291, 10716-10725.	1.6	39
115	Vitamin D attenuates proteinuria by inhibition of heparanase expression in the podocyte. Journal of Pathology, 2015, 237, 472-481.	2.1	38
116	Characterization of a murine renal distal convoluted tubule cell line for the study of transcellular calcium transport. American Journal of Physiology - Renal Physiology, 2004, 286, F483-F489.	1.3	37
117	The immunophilin FKBP52 inhibits the activity of the epithelial Ca2+ channel TRPV5. American Journal of Physiology - Renal Physiology, 2006, 290, F1253-F1259.	1.3	36
118	Insight into renal Mg2+ transporters. Current Opinion in Nephrology and Hypertension, 2011, 20, 169-176.	1.0	36
119	The transient receptor potential channel TRPV6 is dynamically expressed in bone cells but is not crucial for bone mineralization in mice. Journal of Cellular Physiology, 2012, 227, 1951-1959.	2.0	36
120	TRPV5 Is Internalized via Clathrin-dependent Endocytosis to Enter a Ca2+-controlled Recycling Pathway. Journal of Biological Chemistry, 2008, 283, 4077-4086.	1.6	35
121	Mg2+ homeostasis. Current Opinion in Nephrology and Hypertension, 2014, 23, 361-369.	1.0	35
122	Autosomal Dominant Hypercalciuria in a Mouse Model Due to a Mutation of the Epithelial Calcium Channel, TRPV5. PLoS ONE, 2013, 8, e55412.	1.1	35
123	Genome-Wide Meta-Analysis Unravels Interactions between Magnesium Homeostasis and Metabolic Phenotypes. Journal of the American Society of Nephrology: JASN, 2018, 29, 335-348.	3.0	34
124	Regulation of the epithelial calcium channel TRPV5 by extracellular factors. Current Opinion in Nephrology and Hypertension, 2007, 16, 319-324.	1.0	33
125	Function and Regulation of the Na+-Ca2+ Exchanger NCX3 Splice Variants in Brain and Skeletal Muscle. Journal of Biological Chemistry, 2014, 289, 11293-11303.	1.6	33
126	Coordinated regulation of TRPV5-mediated Ca2+ transport in primary distal convolution cultures. Pflugers Archiv European Journal of Physiology, 2014, 466, 2077-2087.	1.3	33

#	Article	IF	Citations
127	Interaction of the epithelial Ca2+ channels TRPV5 and TRPV6 with the intestine- and kidney-enriched PDZ protein NHERF4. Pflugers Archiv European Journal of Physiology, 2006, 452, 407-417.	1.3	32
128	Low gut microbiota diversity and dietary magnesium intake are associated with the development of PPIâ€induced hypomagnesemia. FASEB Journal, 2019, 33, 11235-11246.	0.2	32
129	Epithelial Mg2+ channel TRPM6: insight into theÂmolecular regulation. Magnesium Research, 2009, 22, 127-132.	0.4	31
130	Regulation of magnesium reabsorption in DCT. Pflugers Archiv European Journal of Physiology, 2009, 458, 89-98.	1.3	31
131	A primary culture of distal convoluted tubules expressing functional thiazide-sensitive NaCl transport. American Journal of Physiology - Renal Physiology, 2012, 303, F886-F892.	1.3	31
132	Recent Advances in Extracellular Vesicles as Drug Delivery Systems and Their Potential in Precision Medicine. Pharmaceutics, 2020, 12, 1006.	2.0	31
133	Mechanisms of proton pump inhibitorâ€induced hypomagnesemia. Acta Physiologica, 2022, 235, .	1.8	31
134	Expression of the Novel Epithelial Ca2+ Channel ECaC1 in Rat Pancreatic Islets. Journal of Histochemistry and Cytochemistry, 2002, 50, 789-798.	1.3	30
135	Identification of BSPRY as a Novel Auxiliary Protein Inhibiting TRPV5 Activity. Journal of the American Society of Nephrology: JASN, 2006, 17, 26-30.	3.0	30
136	The impact of formative testing on study behaviour and study performance of (bio)medical students: a smartphone application intervention study. BMC Medical Education, 2015, 15, 72.	1.0	30
137	NaCl cotransporter abundance in urinary vesicles is increased by calcineurin inhibitors and predicts thiazide sensitivity. PLoS ONE, 2017, 12, e0176220.	1.1	30
138	Quantitative Translation of Microfluidic Transporter <i>in Vitro</i> Data to <i>in Vivo</i> Reveals Impaired Albumin-Facilitated Indoxyl Sulfate Secretion in Chronic Kidney Disease. Molecular Pharmaceutics, 2019, 16, 4551-4562.	2.3	30
139	Common single nucleotide polymorphisms in transient receptor potential melastatin type 6 increase the risk for proton pump inhibitor-induced hypomagnesemia. Pharmacogenetics and Genomics, 2017, 27, 83-88.	0.7	29
140	SLC41A1 is essential for magnesium homeostasis in vivo. Pflugers Archiv European Journal of Physiology, 2019, 471, 845-860.	1.3	29
141	Novel molecular pathways in renal Mg2+ transport: a guided tour along the nephron. Current Opinion in Nephrology and Hypertension, 2010, 19, 456-462.	1.0	27
142	Evaluation of Hypomagnesemia: Lessons From Disorders of Tubular Transport. American Journal of Kidney Diseases, 2013, 62, 377-383.	2.1	27
143	P2X4 receptor regulation of transient receptor potential melastatin type 6 (TRPM6) Mg2+ channels. Pflugers Archiv European Journal of Physiology, 2014, 466, 1941-1952.	1.3	27
144	Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling. American Journal of Physiology - Renal Physiology, 2018, 315, F110-F122.	1.3	27

#	Article	IF	CITATIONS
145	Identification of Nipsnap1 as a novel auxiliary protein inhibiting TRPV6 activity. Pflugers Archiv European Journal of Physiology, 2008, 457, 91-101.	1.3	26
146	Early Development of Hyperparathyroidism Due to Loss of <i>PTH </i> Transcriptional Repression in Patients With HNF1Î ² Mutations?. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 4089-4096.	1.8	26
147	Routine hemodialysis induces a decline in plasma magnesium concentration in most patients: a prospective observational cohort study. Scientific Reports, 2018, 8, 10256.	1.6	26
148	Bone Resorption Inhibitor Alendronate Normalizes the Reduced Bone Thickness of TRPV5â^'/â^' Mice. Journal of Bone and Mineral Research, 2008, 23, 1815-1824.	3.1	25
149	Nephron mass determines the excretion rate of urinary extracellular vesicles. Journal of Extracellular Vesicles, 2022, 11, e12181.	5.5	25
150	Dietary Inulin Fibers Prevent Proton-Pump Inhibitor (PPI)-Induced Hypocalcemia in Mice. PLoS ONE, 2015, 10, e0138881.	1.1	24
151	Epithelial Ca2+ and Mg2+ Channels in Kidney Disease. Advances in Chronic Kidney Disease, 2006, 13, 110-117.	0.6	23
152	Na/P i cotransporter (Npt2) gene disruption increases duodenal calcium absorption and expression of epithelial calcium channels 1 and 2. Pflugers Archiv European Journal of Physiology, 2002, 444, 670-676.	1.3	22
153	Thrombin receptor deficiency leads to a high bone mass phenotype by decreasing the RANKL/OPG ratio. Bone, 2015, 72, 14-22.	1.4	22
154	Functionomics of NCC mutations in Gitelman syndrome using a novel mammalian cell-based activity assay. American Journal of Physiology - Renal Physiology, 2016, 311, F1159-F1167.	1.3	22
155	Magnesium to prevent kidney disease–associated vascular calcification: crystal clear?. Nephrology Dialysis Transplantation, 2022, 37, 421-429.	0.4	22
156	The epithelial calcium channel, ECaC1: molecular details of a novel player in renal calcium handling. Nephrology Dialysis Transplantation, 2001, 16, 1329-1335.	0.4	21
157	\hat{I}^3 -Adducin Stimulates the Thiazide-sensitive NaCl Cotransporter. Journal of the American Society of Nephrology: JASN, 2011, 22, 508-517.	3.0	21
158	Regulation of Mg2+ Reabsorption and Transient Receptor Potential Melastatin Type 6 Activity by cAMP Signaling. Journal of the American Society of Nephrology: JASN, 2016, 27, 804-813.	3.0	21
159	The phenotypic and genetic spectrum of patients with heterozygous mutations in cyclin M2 (CNNM2). Human Mutation, 2021, 42, 473-486.	1.1	21
160	Serum Magnesium Is Inversely Associated With Heart Failure, Atrial Fibrillation, and Microvascular Complications in Type 2 Diabetes. Diabetes Care, 2021, 44, 1757-1765.	4.3	21
161	Alternative splice variant of the thiazide-sensitive NaCl cotransporter: a novel player in renal salt handling. American Journal of Physiology - Renal Physiology, 2016, 310, F204-F216.	1.3	20
162	1,25-Vitamin D3 Deficiency Induces Albuminuria. American Journal of Pathology, 2016, 186, 794-804.	1.9	20

#	Article	IF	Citations
163	Adenosine-stimulated Ca ²⁺ reabsorption is mediated by apical A ₁ receptors in rabbit cortical collecting system. American Journal of Physiology - Renal Physiology, 1998, 274, F736-F743.	1.3	19
164	Urinary Plasmin Inhibits TRPV5 in Nephrotic-Range Proteinuria. Journal of the American Society of Nephrology: JASN, 2012, 23, 1824-1834.	3.0	19
165	Characterization of vitamin D-deficient klotho-/- mice: do increased levels of serum 1,25(OH)2D3 cause disturbed calcium and phosphate homeostasis in klotho-/- mice?. Nephrology Dialysis Transplantation, 2012, 27, 4061-4068.	0.4	19
166	Tacrolimusâ€induced hypomagnesemia and hypercalciuria requires FKBP12 suggesting a role for calcineurin. Physiological Reports, 2020, 8, e14316.	0.7	19
167	Role of the Calcium-Sensing Receptor in Reducing the Risk for Calcium Stones. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 2076-2082.	2.2	18
168	Role of the Transient Receptor Potential Vanilloid 5 (TRPV5) Protein N Terminus in Channel Activity, Tetramerization, and Trafficking. Journal of Biological Chemistry, 2011, 286, 32132-32139.	1.6	18
169	Transcription factor $HNF1\hat{l}^2$ regulates expression of the calcium-sensing receptor in the thick ascending limb of the kidney. American Journal of Physiology - Renal Physiology, 2018, 315, F27-F35.	1.3	18
170	Primary ciliaâ€regulated transcriptome in the renal collecting duct. FASEB Journal, 2018, 32, 3653-3668.	0.2	18
171	Novel Aspects of Extracellular Vesicles in the Regulation of Renal Physiological and Pathophysiological Processes. Frontiers in Cell and Developmental Biology, 2020, 8, 244.	1.8	18
172	Cyclin M2 (CNNM2) knockout mice show mild hypomagnesaemia and developmental defects. Scientific Reports, 2021, 11, 8217.	1.6	18
173	ARL15 modulates magnesium homeostasis through N-glycosylation of CNNMs. Cellular and Molecular Life Sciences, 2021, 78, 5427-5445.	2.4	18
174	CNNM proteins selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. PLoS Biology, 2021, 19, e3001496.	2.6	18
175	Fluid shear stress increases transepithelial transport of Ca ²⁺ in ciliated distal convoluted and connecting tubule cells. FASEB Journal, 2017, 31, 1796-1806.	0.2	17
176	Polycystin-1 dysfunction impairs electrolyte and water handling in a renal precystic mouse model for ADPKD. American Journal of Physiology - Renal Physiology, 2018, 315, F537-F546.	1.3	17
177	Insight into the molecular regulation of the epithelial magnesium channel TRPM6. Current Opinion in Nephrology and Hypertension, 2008, 17, 373-378.	1.0	16
178	Importance of dietary calcium and vitamin D in the treatment of hypercalcaemia in Williams-Beuren syndrome. Journal of Pediatric Endocrinology and Metabolism, 2014, 27, 757-61.	0.4	16
179	Magnesium deficiency prevents high-fat-diet-induced obesity in mice. Diabetologia, 2018, 61, 2030-2042.	2.9	16
180	Native LDL potentiate TNFÎ \pm and IL-8 production by human mononuclear cells. Journal of Lipid Research, 2002, 43, 1065-1071.	2.0	15

#	Article	IF	Citations
181	The novel vitamin D analog ZK191784 as an intestine-specific vitamin D antagonist. FASEB Journal, 2006, 20, 2171-2173.	0.2	15
182	The novel vitamin D analog ZK191784 as an intestine-specific vitamin D antagonist. FASEB Journal, 2006, , .	0.2	15
183	A novel <i>KCNA1</i> mutation causing episodic ataxia type I. Muscle and Nerve, 2014, 50, 289-291.	1.0	15
184	Towards Understanding the Role of the Na+-Ca2+ Exchanger Isoform 3. Reviews of Physiology, Biochemistry and Pharmacology, 2015, 168, 31-57.	0.9	15
185	Hydrochlorothiazide treatment increases the abundance of the NaCl cotransporter in urinary extracellular vesicles of essential hypertensive patients. American Journal of Physiology - Renal Physiology, 2017, 312, F1063-F1072.	1.3	15
186	Pannexinâ€1 mediates fluid shear stressâ€sensitive purinergic signaling and cyst growth in polycystic kidney disease. FASEB Journal, 2020, 34, 6382-6398.	0.2	15
187	Metformin regulates TRPM6, a potential explanation for magnesium imbalance in type 2 diabetes patients. Canadian Journal of Physiology and Pharmacology, 2020, 98, 400-411.	0.7	15
188	Characterization of a Madin-Darby canine kidney cell line stably expressing TRPV5. Pflugers Archiv European Journal of Physiology, 2005, 450, 236-244.	1.3	14
189	Calcitonin-stimulated renal Ca2+ reabsorption occurs independently of TRPV5. Nephrology Dialysis Transplantation, 2010, 25, 1428-1435.	0.4	14
190	Increased NEFA levels reduce blood Mg2+ in hypertriacylglycerolaemic states via direct binding of NEFA to Mg2+. Diabetologia, 2019, 62, 311-321.	2.9	14
191	Hormone-stimulated Ca ²⁺ transport in rabbit kidney: multiple sites of inhibition by exogenous ATP. American Journal of Physiology - Renal Physiology, 1999, 277, F899-F906.	1.3	13
192	A helix-breaking mutation in the epithelial Ca2+ channel TRPV5 leads to reduced Ca2+-dependent inactivation. Cell Calcium, 2010, 48, 275-287.	1.1	13
193	The Identification of Histidine 712 as a Critical Residue for Constitutive TRPV5 Internalization. Journal of Biological Chemistry, 2010, 285, 28481-28487.	1.6	13
194	Flavaglines Stimulate Transient Receptor Potential Melastatin Type 6 (TRPM6) Channel Activity. PLoS ONE, 2015, 10, e0119028.	1.1	13
195	Differential regulation of the Na + -Ca 2+ exchanger 3 (NCX3) by protein kinase PKC and PKA. Cell Calcium, 2017, 65, 52-62.	1.1	13
196	Effect of Dapagliflozin Treatment on the Expression of Renal Sodium Transporters/Channels on High-Fat Diet Diabetic Mice. Nephron, 2019, 142, 51-60.	0.9	13
197	Involvement of claudin 3 and claudin 4 in idiopathic infantile hypercalcaemia: a novel hypothesis?. Nephrology Dialysis Transplantation, 2010, 25, 3504-3509.	0.4	12
198	Calcium Extrusion Pump PMCA4: A New Player in Renal Calcium Handling?. PLoS ONE, 2016, 11, e0153483.	1.1	12

#	Article	lF	Citations
199	Calpain-3-mediated regulation of the Na+-Ca2+ exchanger isoform 3. Pflugers Archiv European Journal of Physiology, 2016, 468, 243-255.	1.3	12
200	Renal phospholipidosis and impaired magnesium handling in highâ€fatâ€diet–fed mice. FASEB Journal, 2019, 33, 7192-7201.	0.2	12
201	Tubular flow activates magnesium transport in the distal convoluted tubule. FASEB Journal, 2019, 33, 5034-5044.	0.2	12
202	Proteomic Profile of Urinary Extracellular Vesicles Identifies AGP1 as a Potential Biomarker of Primary Aldosteronism. Endocrinology, 2021, 162, .	1.4	12
203	Is vitamin D indispensable for Ca2+ homeostasis: lessons from knockout mouse models?. Nephrology Dialysis Transplantation, 2005, 20, 864-867.	0.4	11
204	Genetic and drug-induced hypomagnesemia: different cause, same mechanism. Proceedings of the Nutrition Society, 2021, 80, 327-338.	0.4	11
205	Dietary magnesium supplementation inhibits abdominal vascular calcification in an experimental animal model of chronic kidney disease. Nephrology Dialysis Transplantation, 2022, 37, 1049-1058.	0.4	11
206	Ruthenium red selectively depletes inositol 1,4,5-trisphosphate-sensitive calcium stores in permeabilized rabbit pancreatic acinar cells. Journal of Membrane Biology, 1993, 135, 153-163.	1.0	10
207	Ankyrin-3 is a novel binding partner of the voltage-gated potassium channel Kv1.1 implicated in renal magnesium handling. Kidney International, 2014, 85, 94-102.	2.6	10
208	A smart rhodamine–pyridine conjugate for bioimaging of thiocyanate in living cells. RSC Advances, 2015, 5, 103350-103357.	1.7	10
209	Development of a villi-like micropatterned porous membrane for intestinal magnesium and calcium uptake studies. Acta Biomaterialia, 2019, 99, 110-120.	4.1	10
210	\hat{l}^21 -Adrenergic Receptor Signaling Activates the Epithelial Calcium Channel, Transient Receptor Potential Vanilloid Type 5 (TRPV5), via the Protein Kinase A Pathway. Journal of Biological Chemistry, 2014, 289, 18489-18496.	1.6	9
211	Diabetes-induced hypomagnesemia is not modulated by metformin treatment in mice. Scientific Reports, 2019, 9, 1770.	1.6	9
212	Extracellular vesicles regulate purinergic signaling and epithelial sodium channel expression in renal collecting duct cells. FASEB Journal, 2021, 35, e21506.	0.2	9
213	TRPV4 mediates afferent pathways in the urinary bladder. A spinal c-fos study showing TRPV1 related adaptations in the TRPV4 knockout mouse. Pflugers Archiv European Journal of Physiology, 2016, 468, 1741-1749.	1.3	8
214	Transport of Calcium, Magnesium, and Phosphate., 2012,, 226-251.		8
215	The Na ⁺ /Ca ²⁺ Exchanger 1 (NCX1) Variant 3 as the Major Extrusion System in Renal Distal Tubular Transcellular Ca ²⁺ -Transport. Nephron, 2015, 131, 145-152.	0.9	7
216	P2X6 Knockout Mice Exhibit Normal Electrolyte Homeostasis. PLoS ONE, 2016, 11, e0156803.	1.1	7

#	Article	IF	Citations
217	Conditional fast expression and function of multimeric TRPV5 channels using Shield-1. American Journal of Physiology - Renal Physiology, 2009, 296, F204-F211.	1.3	6
218	Urinary \hat{l}^2 -galactosidase stimulates Ca ²⁺ transport by stabilizing TRPV5 at the plasma membrane. Glycobiology, 2016, 26, 472-481.	1.3	6
219	Lifelong challenge of calcium homeostasis in male mice lacking TRPV5 leads to changes in bone and calcium metabolism. Oncotarget, 2016, 7, 24928-24941.	0.8	6
220	Possible role for rare <i>TRPM7</i> variants in patients with hypomagnesaemia with secondary hypocalcaemia. Nephrology Dialysis Transplantation, 2023, 38, 679-690.	0.4	6
221	The vitamin D analog ZK191784 normalizes decreased bone matrix mineralization in mice lacking the calcium channel TRPV5. Journal of Cellular Physiology, 2013, 228, 402-407.	2.0	5
222	Uremic Toxins Induce ET-1 Release by Human Proximal Tubule Cells, which Regulates Organic Cation Uptake Time-Dependently. Cells, 2015, 4, 234-252.	1.8	5
223	Dominant functional role of the novel phosphorylation site S811 in the human renal NaCl cotransporter. FASEB Journal, 2018, 32, 4482-4493.	0.2	5
224	Mechanisms of ion transport regulation by HNF1 \hat{l}^2 in the kidney: beyond transcriptional regulation of channels and transporters. Pflugers Archiv European Journal of Physiology, 2022, 474, 901-916.	1.3	5
225	Dietary Mg2+ Intake and the Na+/Mg2+ Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine Cardiomyocytes. International Journal of Molecular Sciences, 2020, 21, 8221.	1.8	4
226	Low plasma magnesium concentration and future abdominal aortic calcifications in moderate chronic kidney disease. BMC Nephrology, 2021, 22, 71.	0.8	3
227	Colonic expression of calcium transporter TRPV6 is regulated by dietary sodium butyrate. Pflugers Archiv European Journal of Physiology, 2022, 474, 293-302.	1.3	3
228	FAM111A is dispensable for electrolyte homeostasis in mice. Scientific Reports, 2022, 12, .	1.6	3
229	Hormonal regulation of phospholipase D activity in Ca2+ transporting cells of rabbit connecting tubule and cortical collecting duct. Biochimica Et Biophysica Acta - Molecular Cell Research, 2001, 1538, 329-338.	1.9	1
230	Bifunctional protein PCBD2 operates as a coâ \in factor for hepatocyte nuclear factor $1\hat{l}^2$ and modulates gene transcription. FASEB Journal, 2021, 35, e21366.	0.2	1
231	TRPV5-mediated Ca2+ Reabsorption and Hypercalciuria. AIP Conference Proceedings, 2007, , .	0.3	0
232	New molecular insights in calcium and magnesium (re)absorption. Comparative Biochemistry and Physiology Part A, Molecular & (amp; Integrative Physiology, 2009, 153, S78.	0.8	0
233	Calcium Channels. , 2013, , 2167-2185.		0
234	SP019RECURRENT FXYD2 P.GLY41ARG MUTATION IN PATIENTS WITH ISOLATED DOMINANT HYPOMAGNESEMIA. Nephrology Dialysis Transplantation, 2015, 30, iii387-iii387.	0.4	0

#	Article	IF	CITATIONS
235	The role of Transcription Factor Hepatocyte Nuclear Factor $1\hat{l}^2$ in a Transcriptional Network Regulating Cell Polarity in Epithelial Kidney Cells. FASEB Journal, 2021, 35, .	0.2	0
236	Vitamin D: Biological Effects of 1,25(OH)2D3 in the Intestine and the Kidney. , 2003, , 615-620.		0
237	Calcium Channels. , 2008, , 1769-1783.		0
238	Variant Specific Cleavage of the Na + â€Ca 2+ Exchanger NCX3 During Excitotoxicity. FASEB Journal, 2015, 29, LB620.	0.2	0
239	ARL15 Regulates CNNM2â€dependent Mg 2+ Transport by Modulating its Nâ€linked Glycosylation. FASEB Journal, 2020, 34, 1-1.	0.2	0
240	Calciprotein Particle Inhibition Explains Magnesiumâ€mediated Protection against Vascular Calcification. FASEB Journal, 2020, 34, 1-1.	0.2	0
241	TRPM6 and TRPM7 Chanzymes Essential for Magnesium Homeostasis. , 2007, , 34-45.		0
242	Title: Jealous protons sour another happy marriage; the story of how TRPV5 and PI(4,5)P2 split up Cell Calcium, 2022, , 102609.	1.1	0
243	Framework From a Multidisciplinary Approach for Transitioning Variants of Unknown Significance From Clinical Genetic Testing in Kidney Disease to a Definitive Classification. Kidney International Reports, 2022, , .	0.4	O