Alice E Davidson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3265370/publications.pdf Version: 2024-02-01

ALLCE E DAVIDSON

#	Article	IF	CITATIONS
1	Posterior corneal vesicles are not associated with the genetic variants that cause posterior polymorphous corneal dystrophy. Acta Ophthalmologica, 2022, 100, .	1.1	3
2	TCF4-mediated Fuchs endothelial corneal dystrophy: Insights into a common trinucleotide repeat-associated disease. Progress in Retinal and Eye Research, 2021, 81, 100883.	15.5	40
3	A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus. Communications Biology, 2021, 4, 266.	4.4	36
4	Non-Penetrance for Ocular Phenotype in Two Individuals Carrying Heterozygous Loss-of-Function ZEB1 Alleles. Genes, 2021, 12, 677.	2.4	3
5	Machine Learning Algorithms to Detect Subclinical Keratoconus: Systematic Review. JMIR Medical Informatics, 2021, 9, e27363.	2.6	12
6	Novel diseaseâ€causing variants and phenotypic features of Xâ€linked megalocornea. Acta Ophthalmologica, 2021, , .	1.1	1
7	Should Patients with Kearns-Sayre Syndrome and Corneal Endothelial Failure Be Genotyped for a TCF4 Trinucleotide Repeat, Commonly Associated with Fuchs Endothelial Corneal Dystrophy?. Genes, 2021, 12, 1918.	2.4	0
8	CUGC for posterior polymorphous corneal dystrophy (PPCD). European Journal of Human Genetics, 2020, 28, 126-131.	2.8	4
9	A new paradigm for delivering personalised care: integrating genetics with surgical interventions in BEST1 mutations. Eye, 2020, 34, 577-583.	2.1	11
10	IPSC-Derived Corneal Endothelial-like Cells Act as an Appropriate Model System to Assess the Impact of <i>SLC4A11</i> Variants on Pre-mRNA Splicing. , 2019, 60, 3084.		18
11	Genetic Variants Associated With Corneal Biomechanical Properties and Potentially Conferring Susceptibility to Keratoconus in a Genome-Wide Association Study. JAMA Ophthalmology, 2019, 137, 1005.	2.5	45
12	The utility of massively parallel sequencing for posterior polymorphous corneal dystrophy type 3 molecular diagnosis. Experimental Eye Research, 2019, 182, 160-166.	2.6	8
13	CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy–associated TCF4 triplet repeat. Genetics in Medicine, 2019, 21, 2092-2102.	2.4	56
14	Coincidental Occurrence of Schnyder Corneal Dystrophy and Posterior Polymorphous Corneal Dystrophy Type 3. Cornea, 2019, 38, 758-760.	1.7	3
15	Antisense Therapy for a Common Corneal Dystrophy Ameliorates TCF4 Repeat Expansion-Mediated Toxicity. American Journal of Human Genetics, 2018, 102, 528-539.	6.2	59
16	Ectopic GRHL2 Expression Due to Non-coding Mutations Promotes Cell State Transition and Causes Posterior Polymorphous Corneal Dystrophy 4. American Journal of Human Genetics, 2018, 102, 447-459.	6.2	45
17	Genotype-Phenotype Correlation for <i>TGFBI</i> Corneal Dystrophies Identifies p.(G623D) as a Novel Cause of Epithelial Basement Membrane Dystrophy. , 2016, 57, 5407.		22
18	Mutations in CPAMD8 Cause a Unique Form of Autosomal-Recessive Anterior Segment Dysgenesis. American Journal of Human Genetics, 2016, 99, 1338-1352.	6.2	47

ALICE E DAVIDSON

#	Article	IF	CITATIONS
19	Autosomal-Dominant Corneal Endothelial Dystrophies CHED1 and PPCD1 Are Allelic Disorders Caused by Non-coding Mutations in the Promoter of OVOL2. American Journal of Human Genetics, 2016, 98, 75-89.	6.2	70
20	Heterozygous deletions at the ZEB1 locus verify haploinsufficiency as the mechanism of disease for posterior polymorphous corneal dystrophy type 3. European Journal of Human Genetics, 2016, 24, 985-991.	2.8	33
21	Brittle Cornea Syndrome ZNF469 Mutation Carrier Phenotype and Segregation Analysis of Rare ZNF469 Variants in Familial Keratoconus. Investigative Ophthalmology and Visual Science, 2015, 56, 578-586.	3.3	33
22	Identification of Six Novel Mutations in <i>ZEB1</i> and Description of the Associated Phenotypes in Patients with Posterior Polymorphous Corneal Dystrophy 3. Annals of Human Genetics, 2015, 79, 1-9.	0.8	29
23	Association of CHRDL1 Mutations and Variants with X-linked Megalocornea, Neuhäser Syndrome and Central Corneal Thickness. PLoS ONE, 2014, 9, e104163.	2.5	27
24	Retinal Structure and Function in Achromatopsia. Ophthalmology, 2014, 121, 234-245.	5.2	145
25	Mutations in ARL2BP, Encoding ADP-Ribosylation-Factor-Like 2 Binding Protein, Cause Autosomal-Recessive Retinitis Pigmentosa. American Journal of Human Genetics, 2013, 93, 321-329.	6.2	67
26	Clinical and Molecular Analysis of Stargardt Disease With Preserved Foveal Structure and Function. American Journal of Ophthalmology, 2013, 156, 487-501.e1.	3.3	100
27	Screening of a Large Cohort of Leber Congenital Amaurosis and Retinitis Pigmentosa Patients Identifies Novel <i>LCA5</i> Mutations and New Genotype-Phenotype Correlations. Human Mutation, 2013, 34, 1537-1546.	2.5	32