Ramaswamy Murugavel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3265230/publications.pdf

Version: 2024-02-01

193 papers 7,502 citations

46 h-index 76 g-index

206 all docs

206 docs citations

206 times ranked 5739 citing authors

#	Article	IF	CITATIONS
1	Deciphering the Role of Anions and Secondary Coordination Sphere in Tuning Anisotropy in Dy(III) Airâ€Stable <i>D</i> _{5h} SIMs**. Chemistry - A European Journal, 2022, 28, e202103585.	1.7	12
2	Magnetic relaxation in single-ion magnets formed by less-studied lanthanide ions Ce(III), Nd(III), Gd(III), Ho(III), Tm(II/III) and Yb(III). Coordination Chemistry Reviews, 2022, 453, 214288.	9.5	28
3	Supramolecular aggregation in sterically encumbered monoarylphosphates and their H-bonded adducts: multigram synthesis of elusive 2,6-di- <i>tert</i> -butylphenyl phosphate. CrystEngComm, 2022, 24, 3481-3491.	1.3	1
4	Alkali Metal Di- <i>tert</i> -butyl Phosphates: Single-Source Precursors for Homo- and Heterometallic Inorganic Phosphate Materials. Inorganic Chemistry, 2022, 61, 6807-6818.	1.9	3
5	Dinuclear group 12 metal phosphates bridged by hexadentate 2,3,5,6-tetra(2-pyridyl)-pyrazine and their supramolecular organization. Journal of Molecular Structure, 2021, 1224, 128960.	1.8	3
6	Cyclopentadienyl Removal Assisted Nuclearity Expansion in Thermolabile Titanium and Zirconium Organophosphates Sourced from Metallocene Dichlorides. Journal of Organometallic Chemistry, 2021, 932, 121642.	0.8	3
7	Facile synthesis of NiO@Ni(OH)2-α-MoO3 nanocomposite for enhanced solid-state symmetric supercapacitor application. Journal of Colloid and Interface Science, 2021, 585, 505-518.	5.0	81
8	Multifunctionality-assisted supramolecular architecture formation in tert-butyl phosphonic acid adducts with cytosine and adenine. Emergent Materials, 2021, 4, 597-606.	3.2	2
9	The Redox Journey of Iconic Ferrocene: Ferrocenium Dications and Ferrocenate Anions. Angewandte Chemie - International Edition, 2021, 60, 12632-12635.	7.2	17
10	The Redox Journey of Iconic Ferrocene: Ferrocenium Dications and Ferrocenate Anions. Angewandte Chemie, 2021, 133, 12740-12743.	1.6	4
11	Compositional Control as the Key for Achieving Highly Efficient OER Electrocatalysis with Cobalt Phosphates Decorated Nanocarbon Florets. Small, 2020, 16, e1903334.	5.2	66
12	High-Pressure Crystallographic and Magnetic Studies of Pseudo- <i>D</i> _{5<i>h</i>} Symmetric Dy(III) and Ho(III) Single-Molecule Magnets. Inorganic Chemistry, 2020, 59, 717-729.	1.9	38
13	Nanoporous Covalent Organic Framework Embedded with Fe/Fe ₃ O ₄ Nanoparticles as Air-Stable Low-Density Nanomagnets. ACS Applied Nano Materials, 2020, 3, 9088-9096.	2.4	13
14	Di- <i>tert</i> -butylphosphate Derived Thermolabile Calcium Organophosphates: Precursors for Ca(H ₂ PO ₄) ₂ , Ca(HPO ₄), î±-/î²-Ca(PO ₃) ₂ , and Nanocrystalline Ca ₁₀ (PO ₄) ₆ (OH) ₂ . Inorganic Chemistry, 2020, 59, 13233-13244.	1.9	7
15	Enhancing the barrier height for Yb(iii) single-ion magnets by modulating axial ligand fields. Chemical Communications, 2020, 56, 11879-11882.	2.2	7
16	Cyclic zinc organophosphate based expanded ditopic N,N′-metalloligands. Journal of Chemical Sciences, 2020, 132, 1.	0.7	0
17	Discrete and Polymeric Cobalt Pyrophosphates Derived from Pyrophosphoric Acid Diester Ar2 H2 P2 O7. European Journal of Inorganic Chemistry, 2020, 2020, 2352-2361.	1.0	4
18	A single-ion single-electron cerrous magnet. Dalton Transactions, 2019, 48, 15928-15935.	1.6	14

#	Article	lF	CITATIONS
19	Unprecedented Copper(II) Complex with a Topoquinone-like Moiety as a Structural and Functional Mimic for Copper Amine Oxidase: Role of Copper(II) in the Genesis and Amine Oxidase Activity. ACS Catalysis, 2019, 9, 10940-10950.	5.5	15
20	Facile Exfoliation of Singleâ€Crystalline Copper Alkylphosphates to Singleâ€Layer Nanosheets and Enhanced Supercapacitance. Angewandte Chemie - International Edition, 2019, 58, 16844-16849.	7.2	18
21	Ceramic and porous framework metal silicates and phosphates from molecular precursors: an ever-evolving ambient synthesis approach. Emergent Materials, 2019, 2, 273-294.	3.2	9
22	Facile Exfoliation of Singleâ€Crystalline Copper Alkylphosphates to Singleâ€Layer Nanosheets and Enhanced Supercapacitance. Angewandte Chemie, 2019, 131, 17000-17005.	1.6	6
23	Syntheses and structural aspects of six-membered palladacyclic complexes derived from N, Nâ \in 2, Nâ \in 2â \in 2-triary lguanidines with N- or S-thiocyanate ligands. New Journal of Chemistry, 2019, 43, 2307-2327.	1.4	9
24	Bimetallic Nanoparticles Anchored on Core–Shell Support as an Easily Recoverable and Reusable Catalytic System for Efficient Nitroarene Reduction. ACS Omega, 2019, 4, 9241-9250.	1.6	37
25	Hitherto unknown eight-connected frameworks formed from A ₄ B ₄ O ₁₂ metal organophosphate heterocubanes. Chemical Communications, 2019, 55, 7994-7997.	2.2	4
26	Effect of benzoic acid substituents and additional functional groups of ancillary ligands in modulating the nuclearity and aggregation behavior of transition metal carboxylates. Inorganica Chimica Acta, 2019, 486, 283-293.	1.2	10
27	Synthesis, characterisation, nuclease and cytotoxic activity of phosphate-free and phosphate-containing copper $\$\$4^{\text{one}} $ 4 $\$\$4 \ 3\$\$ $ 4 $\$\$2 \ -(N-methylpyridinium)- \$\$2 \ -(N-methylpyridinium)5 \$\$2 \ -(N-methylpyridinium)5 \$\$2 \ -(N-methylpyridinium)5 \$\$2 \ -(N-methylpyridinium)6 \$\$2 \ -(N-methylpyridinium)7 \$\$2 \ -(N-methylpyridinium)8 \$\$2 \ -(N-methylpyridinium)9 \$3 $	0.7 1.	4
28	Dinuclear Manganese(II), Cobalt(II), and Nickel(II) Aryl Phosphates Incorporating 4′â€Chloroâ€2,2′:6′,2′â€Terpyridine Coligands – Efficient Catalysts for Alcohol Oxidation. Europinorganic Chemistry, 2018, 2018, 795-804.	pe ao Jourr	1al2 0 0f
29	A [4+2] Condensation Strategy to Imineâ€Linked Singleâ€Crystalline Zeoliteâ€Like Zinc Phosphate Frameworks. Chemistry - A European Journal, 2018, 24, 6178-6190.	1.7	15
30	Picric acid sensing and \$\$hbox {CO}_{2}\$\$ CO 2 capture by a sterically encumbered azo-linked fluorescent triphenylbenzene based covalent organic polymer. Journal of Chemical Sciences, 2018, 130, 1.	0.7	39
31	Enriching lanthanide single-ion magnetism through symmetry and axiality. Chemical Communications, 2018, 54, 3685-3696.	2.2	99
32	Is a strong axial crystal-field the only essential condition for a large magnetic anisotropy barrier? The case of non-Kramers Ho(<scp>iii</scp>) <i>versus</i> Tb(<scp>iii</scp>). Dalton Transactions, 2018, 47, 357-366.	1.6	30
33	Delineating factors that dictate the framework of a bulky phosphate derived metal complexes: Sterics of phosphate, anion of the metal salt and auxiliary N-donor ligand. Inorganica Chimica Acta, 2018, 469, 353-365.	1.2	8
34	Ethoxysilane appended M(II) complexes and their SiO2/MCM-41 supported forms as catalysts for efficient oxidation of secondary alcohols. Inorganica Chimica Acta, 2018, 469, 173-182.	1.2	12
35	1,3,5-Triphenylbenzene: a versatile photoluminescent chemo-sensor platform and supramolecular building block. RSC Advances, 2018, 8, 17535-17550.	1.7	10
36	2,2′,6,6′â€₹etraisopropylbenzidineâ€Based Sterically Encumbered Ditopic <i>C</i> ₂ ‧ymme Ligand Systems and Supramolecular Building Blocks. ChemistrySelect, 2018, 3, 8082-8094.	etric 0.7	4

#	Article	IF	CITATIONS
37	Bulky 2,6-dibenzhydryl-4-methylphenyl β-diiminato derived complexes of Pd(II) and Cu(II): Efficient catalysts for Suzuki coupling and alcohol oxidation. Journal of Organometallic Chemistry, 2018, 868, 76-85.	0.8	12
38	A decade of "Chemical Frontiers Goa― RSC Advances, 2018, 8, 28602-28603.	1.7	0
39	Thermolabile Organotitanium Monoalkyl Phosphates: Synthesis, Structures, and Utility as Epoxidation Catalysts and Single-Source Precursors for TiP ₂ O ₇ . Inorganic Chemistry, 2018, 57, 7644-7654.	1.9	11
40	Polydentate 4â€Pyridylâ€terpyridine Containing Discrete Cobalt Phosphonate and Polymeric Cobalt Phosphate as Catalysts for Alcohol Oxidation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 692-699.	0.6	3
41	Five different pseudo-polymorphs of 4-aminoarylphosphate: supramolecular aggregation in organophosphates. CrystEngComm, 2017, 19, 1058-1070.	1.3	13
42	An Efficient Synthetic Approach to <i>trans</i> òâ€(NHC) ₂ Pd(R)Br Type Complexes and Their Use in Suzuki–Miyaura Crossâ€Coupling Reactions. European Journal of Inorganic Chemistry, 2017, 2017, 2144-2154.	1.0	10
43	Triphenylbenzene Sensor for Selective Detection of Picric Acid. Journal of Fluorescence, 2017, 27, 1299-1305.	1.3	24
44	Bulky 2,6â€Dibenzhydrylâ€4â€methylaniline Derived Schiff Base Complexes of Pd(II), Cu(II) and Co(II) as Efficient Catalysts for Suzuki Coupling and Alcohol Oxidation Reactions. ChemistrySelect, 2017, 2, 3812-3822.	0.7	9
45	Pentanuclear Lanthanide Mono-organophosphates: Synthesis, Structure, and Magnetism. Inorganic Chemistry, 2017, 56, 3946-3960.	1.9	41
46	Elusive Double-Eight-Ring Zeolitic Secondary Building Unit. Journal of the American Chemical Society, 2017, 139, 59-62.	6.6	26
47	[Am]Mn(H ₂ POO) ₃ : A New Family of Hybrid Perovskites Based on the Hypophosphite Ligand. Journal of the American Chemical Society, 2017, 139, 16999-17002.	6.6	75
48	Sterically encumbered 2,6-dibenzhydryl-4-methylphenyl derived ligand systems: synthesis and structures. Journal of Chemical Sciences, 2017, 129, 1499-1512.	0.7	2
49	Complex Structural Landscape of Titanium Organophosphonates: Isolation of Structurally Related Ti ₄ , Ti ₅ , and Ti ₆ Species and Mechanistic Insights. Inorganic Chemistry, 2017, 56, 12848-12858.	1.9	11
50	Bulky 2,6-Dibenzhydryl-4-methylaniline Derived Schiff Base Complexes of Pd(II) as Efficient Catalysts for Suzuki Coupling: Effect of Coordinated Anion on the Catalytic Activity. ChemistrySelect, 2017, 2, 9577-9585.	0.7	1
51	Catalysis and CO ₂ Capture by Palladiumâ€Incorporated Covalent Organic Frameworks. ChemPlusChem, 2017, 82, 1253-1265.	1.3	46
52	Selective formation of discrete versus polymeric copper organophosphates: DNA cleavage and cytotoxic activity. Dalton Transactions, 2017, 46, 13409-13420.	1.6	19
53	Bulky Isopropyl Group Loaded Tetraaryl Pyrene Based Azo-Linked Covalent Organic Polymer for Nitroaromatics Sensing and CO ₂ Adsorption. ACS Omega, 2017, 2, 3572-3582.	1.6	31
54	Lanthanide Organophosphate Spiro Polymers: Synthesis, Structure, and Magnetocaloric Effect in the Gadolinium Polymer. Inorganic Chemistry, 2017, 56, 9071-9083.	1.9	24

#	Article	IF	CITATIONS
55	Intriguing structural chemistry of neutral and anionic layered monoalkylphosphates: single-source precursors for high-yield ceramic phosphates. CrystEngComm, 2017, 19, 5390-5401.	1.3	8
56	Rare Supramolecular Assemblies of a Dicopper(II)â€tetracarboxylate Stabilized by (Methanol) ₆ , Dimethyl Sulfoxide and 4,4′â€Azobipyridyl Bridges. ChemistrySelect, 2017, 2, 12014-12018.	0.7	3
57	Alkylâ€Chainâ€Separated Triphenybenzene ―Carbazole Conjugates and their Derived Polymers: Candidates for Sensory, Electrical and Optical Materials. ChemistrySelect, 2016, 1, 6649-6657.	0.7	10
58	Zinc Dialkylhydroxybenzoates with Unusual Structures: First Example of a Discrete Threeâ€Blade Paddleâ€Wheel and a Solvent Engulfed Coordination Polymer. ChemistrySelect, 2016, 1, 6658-6668.	0.7	5
59	An air-stable Dy(<scp>iii</scp>) single-ion magnet with high anisotropy barrier and blocking temperature. Chemical Science, 2016, 7, 5181-5191.	3.7	477
60	Three-Fold C 3-Symmetric Off-On Fluorescent Chemo-Sensors for Fluoride. Journal of Fluorescence, 2016, 26, 997-1005.	1.3	7
61	Dimensionality Alteration and Intra- versus Inter-SBU Void Encapsulation in Zinc Phosphate Frameworks. Inorganic Chemistry, 2016, 55, 5180-5190.	1.9	25
62	An unprecedented zero field neodymium(<scp>iii</scp>) single-ion magnet based on a phosphonic diamide. Chemical Communications, 2016, 52, 7168-7171.	2.2	80
63	Dependence of the SBU length on the size of metal ions in alkaline earth MOFs derived from a flexible C ₃ -symmetric tricarboxylic acid. CrystEngComm, 2016, 18, 9130-9138.	1.3	23
64	A Solvent Switch for the Stabilization of Multiple Hemiacetals on an Inorganic Platform: Role of Supramolecular Interactions. Chemistry - A European Journal, 2016, 22, 6863-6875.	1.7	14
65	New sterically encumbered arylimido hexamolybdates for organic oxidation reactions. New Journal of Chemistry, 2016, 40, 1004-1013.	1.4	8
66	[3+3] Imine and \hat{l}^2 -ketoenamine tethered fluorescent covalent-organic frameworks for CO ₂ uptake and nitroaromatic sensing. Journal of Materials Chemistry C, 2015, 3, 7159-7171.	2.7	135
67	Synthetic strategies to achieve further-functionalised monoaryl phosphate primary building units: crystal structures and solid-state aggregation behavior. New Journal of Chemistry, 2015, 39, 1186-1195.	1.4	19
68	Discrete $\{Gd < sup > III < sup > 4 < sub > M\} $ (M = $Gd < sup > III < sup > 0$ r $Go < sup > III < sup > 0$ pentanuclear complexes: a new class of metal-organophosphate molecular coolers. Dalton Transactions, 2015, 44, 5961-5965.	1.6	49
69	Discrete and polymeric cobalt organophosphates: isolation of a 3-D cobalt phosphate framework exhibiting selective CO ₂ capture. Dalton Transactions, 2015, 44, 5587-5601.	1.6	32
70	2,6-Dimethylphenol derived H-phosphonate and \hat{l}_{\pm} -hydroxyphosphonate: facile synthesis, crystal chemistry, supramolecular association and metal complexation. CrystEngComm, 2015, 17, 4355-4366.	1.3	10
71	Is Single-4-Ring the Most Basic but Elusive Secondary Building Unit That Transforms to Larger Structures in Zinc Phosphate Chemistry?. Inorganic Chemistry, 2015, 54, 4882-4894.	1.9	24
72	Anhydrous manganese hypophosphite dense framework solid: Synthesis, structure and magnetic studies. Inorganic Chemistry Communication, 2015, 59, 84-87.	1.8	13

#	Article	IF	CITATIONS
73	Steric group enforced aromatic cyclic trimer conformer in tripodal molecules. RSC Advances, 2015, 5, 74705-74711.	1.7	6
74	Octanuclear Zinc Phosphates with Hitherto Unknown Cluster Architectures: Ancillary Ligand and Solvent Assisted Structural Transformations Thereof. Inorganic Chemistry, 2015, 54, 9458-9469.	1.9	29
75	Role of 4,4′-bipyridine versus longer spacers 4,4′-azobipyridine, 1,2-bis(4-pyridyl)ethylene, and 1,2-bis(pyridin-3-ylmethylene)hydrazine in the formation of thermally labile metallophosphate coordination polymers. Inorganic Chemistry Frontiers, 2015, 2, 55-66.	3.0	9
76	Charge transfer aided selective sensing and capture of picric acid by triphenylbenzenes. New Journal of Chemistry, 2015, 39, 886-892.	1.4	59
77	An anionic two-dimensional indium carboxylate framework derived from a pseudo C 3-symmetric semi-flexible tricarboxylic acid. Journal of Chemical Sciences, 2014, 126, 1385-1391.	0.7	11
78	A Flexible Triâ€carboxylic Acid Derived Zinc(II) 3D Helical Metalâ€Organicâ€Framework and a Cadmium(II) Interwoven 2D Layered Framework Solid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1075-1080.	0.6	11
79	Fluoride Ion Sensing and Caging by a Preformed Molecular D4R Zinc Phosphate Heterocubane. Inorganic Chemistry, 2014, 53, 3345-3353.	1.9	37
80	Organotitanium phosphates with free P–OH groups: Synthesis, spectroscopy and solid state structures. Journal of Organometallic Chemistry, 2014, 751, 555-562.	0.8	9
81	Containment of Polynitroaromatic Compounds in a Hydrogen Bonded Triarylbenzene Host. Crystal Growth and Design, 2014, 14, 5668-5673.	1.4	21
82	Pseudopolymorphism leading and two different supramolecular aggregations in a phosphate monoester: role of a rare water-dimer. CrystEngComm, 2014, 16, 51-55.	1.3	14
83	scattoids. Physical Chemistry Chemical Physics, 2014, 16, 10651-10658.	1.3	64
84	Depalladation of Neutral Monoalkyne- and Dialkyne-Inserted Palladacycles and Alkyne Insertion/Depalladation Reactions of Cationic Palladacycles Derived from ⟨i⟩N⟨ i⟩,⟨i⟩N⟨ i⟩′,⟨i⟩N⟨ i⟩″-Triarylguanidines as Facile Routes for Guanidine-Containing Heterocycles/Carbocycles: Synthetic, Structural, and Mechanistic Aspects. Organometallics, 2014, 33,	1.1	14
85	5554-5565. Ab Initio Chemical Synthesis of Designer Metal Phosphate Frameworks at Ambient Conditions. Inorganic Chemistry, 2014, 53, 8959-8969.	1.9	32
86	Polymeric and cyclic manganese phosphates and phosphinates: Synthesis, spectral characterization and solid-state structures. Inorganica Chimica Acta, 2014, 414, 264-273.	1.2	11
87	Auxiliary ligand-aided tuning of aggregation of transition metal benzoates: isolation of four different types of coordination polymers. CrystEngComm, 2014, 16, 8429-8441.	1.3	12
88	Mono- and Dialkyne Insertion Reactions of Cyclopalladated ⟨i>N⟨ i>,⟨i>N⟨ i>′,⟨i>N⟨ i>″-Triarylguanidines [κ⟨sup>2⟨ sup⟩(⟨i>C⟨ i>,⟨i>N⟨ i>)Pd(ι/₄-Br)]⟨sub>2⟨ sub> ⟨i>cis-⟨ i> ⟨i >trans⟨ i>-[κ⟨sup>2⟨ sup⟩(⟨i>C⟨ i>,⟨i >N⟨ i>)Pd(Lewis Base)Br]. Scaffolds for Enlarged, Rearranged, and Zwitterionic Palladacycles through Ring Contraction cum Amineâ€"Imine		10
89	Tautomerization. Organometallics, 2014, 33, 3182-3197. Cationic D4R zinc phosphate–anionic polyoxometalate hybrids: synthesis, spectra, structure and catalytic studies. Dalton Transactions, 2013, 42, 9755.	1.6	32
90	Influence of steric effect on the structural aspects of N,N′,N″-triarylguanidine derived six-membered [C,N] palladacycles. Polyhedron, 2013, 52, 1041-1052.	1.0	17

#	Article	IF	CITATIONS
91	Non-covalently aggregated zinc and cadmium complexes derived from substituted aromatic carboxylic acids: Synthesis, spectroscopy, and structural studies. Inorganica Chimica Acta, 2013, 405, 522-531.	1.2	21
92	Mono and dinuclear group 12 phosphonates derived from a sterically encumbered phosphonic acid: Observation of esterification. Inorganica Chimica Acta, 2013, 405, 147-154.	1.2	6
93	Insertion Reactions of Six-Membered Cyclopalladated <i>N</i> , <i>N′</i> , <i>N″</i> -Triarylguanidine, [Pd{ΰ ^{<i>2</i>} (<i>C</i>) <i>N³/i>)-C₆H₃Me-3(NHC(NHAr)(â•NAr))-2}(ι⁄₄-B (Ar = 2-MeC₆H₄) with PhC≡C—C(O)OR (R = Me and Et): A Gateway to Second Orthopalladation through Novel Rearrangements. Organometallics. 2013. 32. 7580-7593.</i>	(r)] ₂	2
94	Cyclopentadiene Based Low-Valent Group 13 Metal Compounds: Ligands in Coordination Chemistry and Link between Metal Rich Molecules and Intermetallic Materials. Chemical Reviews, 2012, 112, 3136-3170.	23.0	131
95	Synthesis and Molecular Structures of Carboxylic Acid Group Bearing Two Ketoimines that Exist in Enaminone Form. Journal of Chemical Crystallography, 2012, 42, 12-17.	0.5	3
96	Reactions of [(Me3Si)3CAlMe2] with substituted benzoic acids. Isolation of a rare organoalumoxane carboxylate. Journal of Organometallic Chemistry, 2011, 696, 3155-3161.	0.8	16
97	Synthesis and structural characterization of dinuclear complexes of trivalent aluminum, gallium, indium and chromium derived from pyrazole-2-ethanol. Inorganica Chimica Acta, 2011, 377, 105-110.	1.2	15
98	Synthesis, spectral characterization, and single crystal X-ray structures of a series of manganese-2,2′-bipyridine complexes derived from substituted aromatic carboxylic acids. Inorganica Chimica Acta, 2011, 365, 430-438.	1.2	35
99	Copper phosphates and phosphinates with pyridine/pyrazole alcohol co-ligands: Synthesis and structure. Inorganica Chimica Acta, 2011, 372, 347-352.	1.2	12
100	Noncovalent Synthesis of Hierarchical Zinc Phosphates from a Single Zn ₄ O ₁₂ P ₄ Doubleâ€Fourâ€Ring Building Block: Dimensionality Control through the Choice of Auxiliary Ligands. Chemistry - A European Journal, 2010, 16, 994-1009.	1.7	44
101	Rings, chains and cages in metal phosphate chemistry: The interdependence and possible interconversion between various structural forms. Journal of Organometallic Chemistry, 2010, 695, 916-924.	0.8	19
102	A hexanuclear iron(III) complex [Fe6O2(OH)2(PhCOO)10(hedmp)2]·3CH3CN assembled from 2-hydroxyethyl-3,5-dimethyl pyrazole. Inorganica Chimica Acta, 2010, 363, 3004-3009.	1.2	7
103	Three-dimensional sodium phosphinates derived from a bis-functionalized phosphinic acid. Inorganic Chemistry Communication, 2010, 13, 1530-1533.	1.8	8
104	One, two, and three methylene phosphonic acid groups (–CH2PO3H2) on a mesitylene ring: synthesis, characterization and aspects of supramolecular aggregation. New Journal of Chemistry, 2010, 34, 1846.	1.4	31
105	Assembling Discrete D4R Zeolite SBUs through Noncovalent Interactions. 3. Mediation by Butanols and 1,2-Bis(dimethylamino)ethane. Inorganic Chemistry, 2010, 49, 2153-2162.	1.9	28
106	Structural variations in layered alkaline earth metal cyclohexyl phosphonates. Bulletin of Materials Science, 2009, 32, 321-328.	0.8	5
107	Controlling the Structure of Manganese(II) Phosphates by the Choice and Ratio of Organophosphate and Auxiliary Ligands. Chemistry - an Asian Journal, 2009, 4, 143-153.	1.7	25
108	Nuclearity Control in Molecular Iron Phosphates through Choice of Iron Precursors and Ancillary Ligands. Chemistry - an Asian Journal, 2009, 4, 923-935.	1.7	24

#	Article	IF	Citations
109	Conformational and Isomeric Preferences of Six-Membered Inorganic Heterocycles [EtNP(E)(OR)] ₃ (E = Lone Pair, O, S, or Se): A Synthetic, Spectroscopic, Structural, and Computational Study. Inorganic Chemistry, 2009, 48, 2048-2059.	1.9	9
110	Di-, Tri-, Tetra-, and Hexanuclear Copper(II) Mono-organophosphates: Structure and Nuclearity Dependence on the Choice of Phosphorus Substituents and Auxiliary N-Donor Ligands. Inorganic Chemistry, 2009, 48, 183-192.	1.9	42
111	Tetra- and Decanuclear Iron(III) Phosphonates: Observance of a Rare Pâ^'C Bond Cleavage in a Homogeneous Medium. Inorganic Chemistry, 2009, 48, 646-651.	1.9	35
112	Facile one-pot synthesis of functionalized organophosphonate esters via ketone insertion into bulky arylphosphites. Journal of Chemical Sciences, 2008, 120, 131-136.	0.7	6
113	Water in Organoaluminum Chemistry! <i>Threeâ€inâ€One</i> Aluminophosphate Clusters That Incorporate Boehmite Repeating Units. Chemistry - A European Journal, 2008, 14, 3869-3873.	1.7	37
114	Structural Diversity in Organotin Compounds Derived from Bulky Monoaryl Phosphates: Dimeric, Tetrameric, and Polymeric Tin Phosphate Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 1508-1517.	1.0	28
115	Structural Diversity in Zinc Phosphates and Phosphinates: Observation of a Lattice Water Dimer Sandwiched Between Phosphoryl Oxygen Atoms. European Journal of Inorganic Chemistry, 2008, 2008, 1834-1845.	1.0	32
116	Microwave assisted solid-state synthesis of functional organotin carboxylates from sterically encumbered 3,5-di-tert-butylsalicylic acid. Journal of Organometallic Chemistry, 2008, 693, 3111-3116.	0.8	26
117	Assembling metal phosphonates in the presence of monodentate-terminal and bidentate-bridging pyridine ligands. Use of non-covalent and covalent-coordinate interactions to build polymeric metal–phosphonate architectures. Dalton Transactions, 2008, , 5358.	1.6	51
118	Organic-Soluble Tri-, Tetra-, and Pentanuclear Titanium(IV) Phosphates. Inorganic Chemistry, 2008, 47, 7686-7694.	1.9	29
119	Asymmetric Pentameric and Tetrameric Organooxotin Clusters: Insights into Their Formation through Partial Dearylation. Organometallics, 2008, 27, 2784-2788.	1.1	17
120	Cooperative Binding of Phosphate Anion and a Neutral Nitrogen Donor to Alkaline-Earth Metal Ions. Investigation of Group 2 Metalâ^'Organophosphate Interaction in the Absence and Presence of 1,10-Phenanthroline. Inorganic Chemistry, 2008, 47, 6028-6039.	1.9	29
121	Seeking tetrameric transition metal phosphonate with a D4R core and organising it into a 3-D supramolecular assembly. Chemical Communications, 2007, , 1257.	2.2	70
122	Structural Diversity and Supramolecular Aggregation in Calcium, Strontium, and Barium Salicylates Incorporating 1,10-Phenanthroline and 4,4â€~-Bipyridine:  Probing the Softer Side of Group 2 Metal Ions with Pyridinic Ligands. Inorganic Chemistry, 2007, 46, 11048-11062.	1.9	56
123	Supramolecular Aggregation in Alkaline Earth Metal Amino Benzoates with 1,10â€Phenanthroline Auxiliary. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2007, 37, 779-795.	0.6	5
124	Unusual reactivity of a sterically hindered diphosphazane ligand, $EtN\{P(OR)2\}2$, (R = C6H3(Pri)2-2,6) towards (\hat{l} -3-allyl)palladium precursors. Dalton Transactions, 2007, , 2908-2914.	1.6	7
125	Synthesis, magnetic behaviour, and X-ray structures of dinuclear copper complexes with multiple bridges. Efficient and selective catalysts for polymerization of 2,6-dimethylphenol. Dalton Transactions, 2007, , 2405-2410.	1.6	25
126	A Double Helix Is the Repeating Unit in a Luminescent Calcium 5-Aminoisophthalate Supramolecular Edifice with Water-Filled Hexagonal Channels. Inorganic Chemistry, 2007, 46, 6828-6830.	1.9	38

#	Article	IF	Citations
127	First organotin complex of a phosphonic diamide RP(O)(NHR)2. Journal of Organometallic Chemistry, 2007, 692, 1920-1923.	0.8	18
128	Sterically encumbered acyclic diphosphazanes: synthesis, conformations and coordination behavior. Dalton Transactions, 2006, , 2140.	1.6	4
129	Novel Layered Copper Phosphoramidate, Which Contains Six-Membered Rings Made of Five Different Elements. Inorganic Chemistry, 2006, 45, 9154-9156.	1.9	17
130	A novel dimeric copper salicylate with an undissociated COOH group: Synthesis and crystal structure of [Cu2(HSal)(Sal)(2,2′-bpy)2](ClO4). Inorganic Chemistry Communication, 2006, 9, 1002-1006.	1.8	42
131	Synthesis and spectral characterization of diorganodiaminosilanes [(ArNH)2SiPhMe] (Ar=2,6-iPr2C6H3;) Tj ETQq1 Organometallic Chemistry, 2006, 691, 3260-3266.		14 rgBT /Ove 9
132	Hierarchical Structures Built from a Molecular Zinc Phosphate Core. Angewandte Chemie - International Edition, 2006, 45, 5536-5540.	7.2	83
133	Octameric and Decameric Aluminophosphates. Angewandte Chemie - International Edition, 2006, 45, 7022-7026.	7.2	61
134	First Examples of Metal Cyclohexylphosphonates: Influence of the Choice of Synthetic Route on the Product. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 2806-2811.	0.6	8
135	Recent Developments in the Chemistry of Molecular Titanosiloxanes and Titanophosphonates. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2005, 35, 591-622.	0.6	12
136	Non-Interpenetrating Transition Metal Diorganophosphate 2-Dimensional Rectangular Grids from Their 1-Dimensional Wires: Structural Transformations under Mild Conditionsâ€. Inorganic Chemistry, 2005, 44, 6314-6323.	1.9	63
137	Synthesis, Spectral Studies, and Structural Characterization of a New Organosilanetriol, Its Amine Complexes, and a Surface Lewis Basic Cubic Aluminosilicate§. Organometallics, 2005, 24, 2124-2128.	1.1	30
138	Polyhedral Ferrous and Ferric Siloxanes. Angewandte Chemie - International Edition, 2004, 43, 3832-3835.	7.2	64
139	Stabilization of p-Block Organoelement Terminal Hydroxides, Thiols, and Selenols Requires Newer Synthetic Strategies. Chemistry - A European Journal, 2004, 10, 324-331.	1.7	22
140	Monomeric, Tetrameric, and Polymeric Copper Di-tert-butyl Phosphate Complexes Containing Pyridine Ancillary Ligandsâ€,⊥. Inorganic Chemistry, 2004, 43, 945-953.	1.9	63
141	Hexameric Organotincarboxylates with Cyclic and Drum Structures. Organometallics, 2004, 23, 5644-5647.	1.1	110
142	Cobalt and Manganese Nets via Their Wires:Â Facile Transformation in Metalâ-'Diorganophosphates. Inorganic Chemistry, 2004, 43, 7585-7587.	1.9	62
143	Formation of One-Dimensional Water Inside an Organic Solid:  Supramolecular Architectures Derived by the Interaction of Aminobenzoic Acids with Nitrogen Bases and H2SO4â€. Crystal Growth and Design, 2004, 4, 545-552.	1.4	52
144	Stabilization of Organosilanetriols in Amine Matrices: Trapping Intermediates between RSi(OH)3and (RSiO3)3-Anions§. Organometallics, 2004, 23, 2305-2314.	1.1	43

#	Article	IF	CITATIONS
145	A Nanoscopic Molecular Cadmium Phosphonate Wrapped in a Hydrocarbon Sheath. Angewandte Chemie - International Edition, 2003, 42, 4482-4485.	7.2	56
146	Synthesis, characterization and structures of diphenyldiaminosilanes bearing bulky substituents on nitrogen. Journal of Organometallic Chemistry, 2003, 675, 65-71.	0.8	24
147	First alkaline earth metal 3-aminobenzoate (3-aba) complex: 1-D polymeric [Ca(3-aba)2(H2O)2]n assembly. Inorganic Chemistry Communication, 2003, 6, 810-814.	1.8	49
148	Reactivity Studies, Structural Characterization, and Thermolysis of Cubic Titanosiloxanes: Precursors to Titanosilicate Materials Which Catalyze Olefin Epoxidation. Inorganic Chemistry, 2003, 42, 4696-4706.	1.9	50
149	O–H Bond elongation in co-ordinated water through intramolecular Pî€Oâc H–O bonding. †Snap-shots' phosphate ester hydrolysis. Chemical Communications, 2003, , 2546-2547.	in 2.2	42
150	Synthesis, spectral characterization and crystal structures of organophosphonic diamides: pyramidal nitrogen centers and hydrogen bonding in [PhP(O)(NHtBu)2], [PhP(O)(NHDipp)2] (Dipp = 2,6-iPr2C6H3) and [tBuP(O)(NHiPr)2]. New Journal of Chemistry, 2003, 27, 968-974.)1.4	17
151	Di-tert-butyl Phosphate as Synthon for Metal Phosphate Materials via Single-Source Coordination Polymers [M(dtbp)2]n(M = Mn, Cu) and [Cd(dtbp)2(H2O)]n(dtbp-H = (tBuO)2P(O)OH)â€. Inorganic Chemistry, 2002, 41, 6404-6411.	1.9	53
152	Anionic metal–organic and cationic organic layer alternation in the coordination polymers [{M(BTEC)(OH2)4}·{C4H12N2}·4H2O]n (M = Co, Ni, and Zn; BTEC = 1,2,4,5-benzenetetracarboxylate). Dalton Transactions RSC, 2002, , 34-39.	2.3	105
153	Di-tert-butyl Phosphate Complexes of Cobalt(II) and Zinc(II) as Precursors for Ceramic M(PO3)2and M2P2O7Materials: Synthesis, Spectral Characterization, Structural Studies, and Role of Auxiliary Ligandsâ€. Inorganic Chemistry, 2001, 40, 427-434.	1.9	89
154	Synthesis and Structure of a Novel Lithium Gallosiloxane Containing a Ga4Si4O8Macrocycle Analogous to the S8R Building Unit of Zeolitesâ€. Organometallics, 2001, 20, 2639-2642.	1.1	28
155	Is Water a Friend or Foe in Organometallic Chemistry? The Case of Group 13 Organometallic Compoundsâ€. Accounts of Chemical Research, 2001, 34, 201-211.	7.6	120
156	Reactions of 2-Mercaptobenzoic Acid with Divalent Alkaline Earth Metal Ions: Synthesis, Spectral Studies, and Single-Crystal X-ray Structures of Calcium, Strontium, and Barium Complexes of 2,2â€~-Dithiobis(benzoic acid)â€,‡. Inorganic Chemistry, 2001, 40, 6870-6878.	1.9	97
157	Organic Soluble Silicophosphonate [RSi(OH){OP(O)(H)(OH)}]2O (R = (2,6-i-Pr2C6H3)NSiMe3): The First Silicophosphonate Containing Free Siâ^'OH and Pâ^'OH Groupsâ€. Inorganic Chemistry, 2001, 40, 1084-1085.	1.9	18
158	Di-tert-butylphosphate Complexes of Mn(II) and Cu(II) as Single-Source Precursors for Metal Phosphate Materials. Chemistry Letters, 2001, 30, 84-85.	0.7	27
159	A novel cyclic titanasiloxane derived from [Ph2Si(OH)]2O: synthesis and crystal structure of [Cp*Ti(Cl)(OSiPh2OSiPh2OSiPh2O)]. Journal of Organometallic Chemistry, 2001, 625, 195-199.	0.8	23
160	Synthesis of polyferromethylsiloxane sorbents using a sol–gel method. Solid State Sciences, 2001, 3, 169-182.	1.5	3
161	Metal Containing New Inorganic Ring Systems Based on Siloxane and Phosphazane Frameworks. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 168, 263-268.	0.8	2
162	SYNTHESIS AND CHARACTERIZATION OF NEW (CHLORO)AMINOSILANES: X-RAY CRYSTAL STRUCTURE OF [(2,6-Me2C6H3NH)2SiCl2]. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 174, 229-238.	0.8	4

#	Article	IF	CITATIONS
163	Synthesis, Spectral Characterization, and Structural Studies of 2-Aminobenzoate Complexes of Divalent Alkaline Earth Metal Ions: X-ray Crystal Structures of [Ca(2-aba)2(OH2)3]â⁻ž, [{Sr(2-aba)2(OH2)2}Â⋅H2O]â⁻ž, and [Ba(2-aba)2(OH2)]â⁻ž(2-abaH = 2-NH2C6H4COOH)â€. Inorganic Chemistry, 2000, 39, 1381-1390.	1.9	100
164	Organosilanetriols: model compounds and potential precursors for metal-containing silicate assemblies. Applied Organometallic Chemistry, 1999, 13, 227-243.	1.7	71
165	Monovalent Group 13 Organometallic Compounds: Weak Association to Monomeric, Versatile Two-Electron Donors. Angewandte Chemie - International Edition, 1999, 38, 1211-1215.	7.2	29
166	Molecular Phosphonate Cages:  Model Compounds and Starting Materials for Phosphate Materials. Accounts of Chemical Research, 1999, 32, 117-126.	7.6	201
167	Reactions of Trialkyl Phosphates with Trialkyls of Aluminum and Gallium:  New Route to Alumino- and Gallophosphate Compounds via Dealkylsilylation. Organometallics, 1999, 18, 523-528.	1.1	51
168	Conversion of Alkyltantalum Chlorides to Fluorides Using Trimethyltin Fluoride as a Fluorinating Agent. Crystal Structures of (p-MeC6H4CH2)3TaF2, (Me3SnCl·Me3SnF·TaF5)n, (Me3Si)2CHTaCl4, {(Me3Si)2CHTaCl4·[(Me3Si)2CH]2Ta2Cl6(ν2-O)}, and (Me3Si)2CHTaF4. Organometallics, 1999, 18, 832-836.	1.1	22
169	Novel Organic-Soluble Molecular Titanophosphonates with Cage Structures Comparable to Titanium-Containing Silicatesâ€. Organometallics, 1998, 17, 2865-2868.	1.1	47
170	Gallophosphonates Containing Alkali Metal Ions. 2.1 Synthesis and Structure of Gallophosphonates Incorporating Na+ and K+ Ions. Inorganic Chemistry, 1998, 37, 473-478.	1.9	38
171	Syntheses, Spectroscopy, Structures, and Reactivity of Neutral Cubic Group 13 Molecular Phosphonatesâ€. Inorganic Chemistry, 1997, 36, 4202-4207.	1.9	55
172	The First Molecular Borophosphonate Cage: Synthesis, Spectroscopy, and Single-Crystal X-ray Structureâ€. Organometallics, 1997, 16, 516-518.	1.1	55
173	A Novel Molecular Gallium Phosphonate Cage Containing Sandwiched Lithium Ions:Â Synthesis, Structure, and Reactivity. Journal of the American Chemical Society, 1997, 119, 4656-4661.	6.6	52
174	Organometallic Fluorides:  Compounds Containing Carbonâ^'Metalâ^'Fluorine Fragments of d-Block Metals. Chemical Reviews, 1997, 97, 3425-3468.	23.0	286
175	Syntheses, spectroscopy and crystal structures of new group 4 metallasiloxanes. Journal of Molecular Structure, 1997, 436-437, 49-57.	1.8	16
176	Titanosilicates: Recent Developments in Synthesis and Use as Oxidation Catalysts. Angewandte Chemie International Edition in English, 1997, 36, 477-479.	4.4	160
177	Soluble Molecular Titanosilicates. Angewandte Chemie International Edition in English, 1997, 36, 1001-1003.	4.4	46
178	Organic-Soluble Neutral and Ionic Indium Siloxane Cages: Potential Precursors for Indium-Containing Silicates. Angewandte Chemie International Edition in English, 1997, 36, 2203-2205.	4.4	29
179	Lösliche, molekulare Titanosilicate. Angewandte Chemie, 1997, 109, 1020-1022.	1.6	19
180	The Role of the 2,4,6â€Tris(trifluoromethyl)phenylamino Group in Stabilizing New Phosphorusâ€, Arsenicâ€, and Germaniumâ€Containing Mainâ€Group Compounds and Transitionâ€Metal Derivatives. Chemische Berichte, 1997, 130, 1113-1121.	0.2	51

#	Article	IF	Citations
181	Facile and Rational Route for High-Yield Synthesis of Titanasiloxanes from Aminosilanetriols. Organometallics, 1996, 15, 1610-1613.	1.1	58
182	Discrete Silanetriols:  Building Blocks for Three-Dimensional Metallasiloxanes. Accounts of Chemical Research, 1996, 29, 183-189.	7.6	194
183	Stannasiloxanes with Acyclic, Bicyclic, and Cubic Core Structures: X-ray Crystal Structure of the Bicyclic Compound [RSi(OSnPh2O)3SiR] (R = (2,6-Me2C6H3)NSiMe3)â€. Organometallics, 1996, 15, 5097-5101.	1.1	37
184	Cyclic and Polyhedral Aluminosiloxanes with Al2Si2O4, Al4Si2O6, and Al4Si4O12 Frameworks:  X-ray Crystal Structures of [(2,4,6-Me3C6H2)N(SiMe3)Si(OAlBu-i)(OAl(Bu-i)2)O]2 and [(2,6-Me2C6H3)N(SiMe3)SiO3Al·C4H8O2]4. Organometallics, 1996, 15, 918-922.	1.1	64
185	Hetero- and Metallasiloxanes Derived from Silanediols, Disilanols, Silanetriols, and Trisilanols. Chemical Reviews, 1996, 96, 2205-2236.	23.0	575
186	Cubic Group 13 Heterosiloxanes with Four Co3(CO)9C Cluster Units as Substituents:Â Novel Soluble Model Compounds for Synthetic Zeolites Showing Catalytic Activity in Hydroformylation Reactions. Journal of the American Chemical Society, 1996, 118, 8580-8587.	6.6	39
187	An efficient synthetic route to primary and secondary condensation products of silanetriols starting from (arylamino)trichlorosilanes. Chemical Communications, 1996, , 2417-2418.	2.2	27
188	Synthese und Struktur von GalliumsiloxankĀfagen: Modellsubstanzen fýr galliumhaltige Silicate. Angewandte Chemie, 1996, 108, 823-825.	1.6	33
	(2,4,6â€Me ₃ C ₆ H´ ₂)N(SiMe ₃)Si(OSiMe ₃)(OH) <s and<="" th=""><th></th><th></th></s>		
189	(2,4,6â€Me ₃ C ₆ H ₂)N(SiMe ₃)Si(OSiMe ₂ R)(OH) ∫R = CH ₂ (2â€NH ₂)1. Chemiso	sub>2che	10>
190	Berichte, 1996, 129, 391-395. Synthesis and Structure of Gallium Siloxane Cages: Model Substances for Gallium-Containing Silicates. Angewandte Chemie International Edition in English, 1996, 35, 748-750.	4.4	40
191	Infrared and 29Si NMR spectroscopic investigations on metallasiloxanes derived from organosilanetriols. Journal of Organometallic Chemistry, 1996, 521, 279-286.	0.8	26
192	Synthesis, spectroscopic and structural characterization of the first mixed fluoro-bromo group 4 organometallic complex $[{Cp*ZrF2Br}4]$ (${Cp*}=C5Me5$). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1996, 622, 579-582.	0.6	8
193	New Lipophilic Air-Stable Silanetriols: First Example of an X-ray Crystal Structure of a Silanetriol with Si-N Bonds. Organometallics, 1995, 14, 5298-5301.	1.1	85