Junhui Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3265119/publications.pdf

Version: 2024-02-01

623574 677027 1,640 23 14 22 citations h-index g-index papers 23 23 23 3023 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ogfod1 deletion increases cardiac beta-alanine levels and protects mice against ischaemia– reperfusion injury. Cardiovascular Research, 2022, 118, 2847-2858.	1.8	3
2	Cardiac specific knock-down of peroxisome proliferator activated receptor \hat{l}_{\pm} prevents fasting-induced cardiac lipid accumulation and reduces perilipin 2. PLoS ONE, 2022, 17, e0265007.	1.1	5
3	Monitoring mitochondrial calcium and metabolism in the beating MCU-KO heart. Cell Reports, 2021, 37, 109846.	2.9	20
4	Multiview confocal super-resolution microscopy. Nature, 2021, 600, 279-284.	13.7	55
5	EMRE is essential for mitochondrial calcium uniporter activity in a mouse model. JCI Insight, 2020, 5, .	2.3	44
6	Perfused murine heart optical transmission spectroscopy using optical catheter and integrating sphere: Effects of ischemia/reperfusion. Analytical Biochemistry, 2019, 586, 113443.	1.1	9
7	A knock-in mutation at cysteine 144 of TRIM72 is cardioprotective and reduces myocardial TRIM72 release. Journal of Molecular and Cellular Cardiology, 2019, 136, 95-101.	0.9	5
8	Human Relaxinâ€2 Fusion Protein Treatment Prevents and Reverses Isoproterenolâ€Induced Hypertrophy and Fibrosis in Mouse Heart. Journal of the American Heart Association, 2019, 8, e013465.	1.6	14
9	Paradoxical arteriole constriction compromises cytosolic and mitochondrial oxygen delivery in the isolated saline-perfused heart. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1791-H1804.	1.5	13
10	Non-nuclear estrogen receptor alpha activation in endothelium reduces cardiac ischemia-reperfusion injury in mice. Journal of Molecular and Cellular Cardiology, 2017, 107, 41-51.	0.9	63
11	Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle. Journal of Biological Chemistry, 2016, 291, 23343-23362.	1.6	49
12	Additive cardioprotection by pharmacological postconditioning with hydrogen sulfide and nitric oxide donors in mouse heart: S-sulfhydration vs. S-nitrosylation. Cardiovascular Research, 2016, 110, 96-106.	1.8	49
13	Mitochondrial Protein PGAM5 Regulates Mitophagic Protection against Cell Necroptosis. PLoS ONE, 2016, 11, e0147792.	1.1	102
14	The Ins and Outs of Mitochondrial Calcium. Circulation Research, 2015, 116, 1810-1819.	2.0	214
15	Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovascular Research, 2015, 106, 227-236.	1.8	74
16	Characterization of the cardiac succinylome and its role in ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2015, 88, 73-81.	0.9	132
17	Molecular Signature of Nitroso–Redox Balance in Idiopathic Dilated Cardiomyopathies. Journal of the American Heart Association, 2015, 4, e002251.	1.6	12
18	Signaling by S-nitrosylation in the heart. Journal of Molecular and Cellular Cardiology, 2014, 73, 18-25.	0.9	79

#	Article	IF	CITATIONS
19	The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nature Cell Biology, 2013, 15, 1464-1472.	4.6	571
20	Essential role of nitric oxide in acute ischemic preconditioning: S-Nitros(yl)ation versus sGC/cGMP/PKG signaling?. Free Radical Biology and Medicine, 2013, 54, 105-112.	1.3	59
21	Cardioprotective Role of Caveolae in Ischemia-Reperfusion Injury. Translational Medicine (Sunnyvale,) Tj $$ ETQq $$ 1 $$ 1 $$	0.784314 0.4	rgBT /Overl
22	Disruption of Caveolae Blocks Ischemic Preconditioning-Mediated S-Nitrosylation of Mitochondrial Proteins. Antioxidants and Redox Signaling, 2012, 16, 45-56.	2.5	61
23	Overexpression of myristoylated methionine sulfoxide reductase A in the mouse protects the heart against ischemiaâ€reperfusion injury. FASEB Journal, 2011, 25, 913.10.	0.2	O