Anthony P F Turner

List of Publications by Citations

Source: https://exaly.com/author-pdf/3265042/anthony-p-f-turner-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

266 18,584 69 129 h-index g-index citations papers 8.5 283 20,020 7.15 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
266	Ferrocene-mediated enzyme electrode for amperometric determination of glucose. <i>Analytical Chemistry</i> , 1984 , 56, 667-71	7.8	1363
265	Glucose oxidase: an ideal enzyme. <i>Biosensors and Bioelectronics</i> , 1992 , 7, 165-185	11.8	1078
264	Biosensors: sense and sensibility. <i>Chemical Society Reviews</i> , 2013 , 42, 3184-96	58.5	992
263	Home blood glucose biosensors: a commercial perspective. <i>Biosensors and Bioelectronics</i> , 2005 , 20, 243	5 -15:3 8	668
262	Molecularly imprinted polymers for the recognition of proteins: the state of the art. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 1131-7	11.8	438
261	Tech.Sight. Biochemistry. Biosensorssense and sensitivity. <i>Science</i> , 2000 , 290, 1315-7	33.3	406
260	Surface plasmon resonance imaging for affinity-based biosensors. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 957-66	11.8	353
259	Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. <i>Biosensors and Bioelectronics</i> , 2004 , 19, 515-30	11.8	341
258	Molecularly-imprinted polymer sensors: realising their potential. <i>Biosensors and Bioelectronics</i> , 2016 , 76, 131-44	11.8	330
257	Surface-grafted molecularly imprinted polymers for protein recognition. <i>Analytical Chemistry</i> , 2001 , 73, 5281-6	7.8	321
256	Electronic noses and disease diagnostics. <i>Nature Reviews Microbiology</i> , 2004 , 2, 161-6	22.2	306
255	Cancer detection using nanoparticle-based sensors. Chemical Society Reviews, 2012, 41, 2606-22	58.5	284
254	Advances in the manufacture of MIP nanoparticles. <i>Trends in Biotechnology</i> , 2010 , 28, 629-37	15.1	274
253	Rational design of a polymer specific for microcystin-LR using a computational approach. <i>Analytical Chemistry</i> , 2002 , 74, 1288-93	7.8	251
252	Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach. <i>Analyst, The</i> , 2001 , 126, 1826-1830	5	246
251	Solid-Phase Synthesis of Molecularly Imprinted Polymer Nanoparticles with a Reusable Template - "Plastic Antibodies". <i>Advanced Functional Materials</i> , 2013 , 23, 2821-2827	15.6	245
250	Imprinted polymer-based sensor system for herbicides using differential-pulse voltammetry on screen-printed electrodes. <i>Analytical Chemistry</i> , 1999 , 71, 3698-702	7.8	198

(1988-2008)

249	Too large to fit? Recent developments in macromolecular imprinting. <i>Trends in Biotechnology</i> , 2008 , 26, 218-24	15.1	192
248	Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. <i>Langmuir</i> , 2015 , 31, 10913-21	4	171
247	Determination of anticholinesterase pesticides in real samples using a disposable biosensor. <i>Analytica Chimica Acta</i> , 1997 , 337, 315-321	6.6	168
246	Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays. <i>Biosensors and Bioelectronics</i> , 2001 , 16, 701-7	11.8	164
245	Molecular imprinting: at the edge of the third millennium. <i>Trends in Biotechnology</i> , 2001 , 19, 9-12	15.1	164
244	Lateral-flow technology: From visual to instrumental. <i>TrAC - Trends in Analytical Chemistry</i> , 2016 , 79, 297-305	14.6	156
243	MIP-based solid phase extraction cartridges combined with MIP-based sensors for the detection of microcystin-LR. <i>Biosensors and Bioelectronics</i> , 2003 , 18, 119-27	11.8	153
242	Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer. <i>Biosensors and Bioelectronics</i> , 2004 , 20, 145-52	11.8	152
241	"Bite-and-Switch" approach using computationally designed molecularly imprinted polymers for sensing of creatinine. <i>Biosensors and Bioelectronics</i> , 2001 , 16, 631-7	11.8	150
240	Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme-linked assay for beta-agonists determination. <i>Analytical Chemistry</i> , 2000 , 72, 4381-5	7.8	140
240	Application of artificial adrenergic receptor in enzyme-linked assay for beta-agonists	7.8 5.8	140
, i	Application of artificial adrenergic receptor in enzyme-linked assay for beta-agonists determination. <i>Analytical Chemistry</i> , 2000 , 72, 4381-5 A repertoire of biomedical applications of noble metal nanoparticles. <i>Chemical Communications</i> ,	ĺ	139
239	Application of artificial adrenergic receptor in enzyme-linked assay for beta-agonists determination. <i>Analytical Chemistry</i> , 2000 , 72, 4381-5 A repertoire of biomedical applications of noble metal nanoparticles. <i>Chemical Communications</i> , 2019 , 55, 6964-6996 Structuring Au nanoparticles on two-dimensional MoS nanosheets for electrochemical glucose	5.8	139
239	Application of artificial adrenergic receptor in enzyme-linked assay for beta-agonists determination. <i>Analytical Chemistry</i> , 2000 , 72, 4381-5 A repertoire of biomedical applications of noble metal nanoparticles. <i>Chemical Communications</i> , 2019 , 55, 6964-6996 Structuring Au nanoparticles on two-dimensional MoS nanosheets for electrochemical glucose biosensors. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 545-550 Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection	5.8 11.8 11.8	139
239 238 237	Application of artificial adrenergic receptor in enzyme-linked assay for beta-agonists determination. <i>Analytical Chemistry</i> , 2000 , 72, 4381-5 A repertoire of biomedical applications of noble metal nanoparticles. <i>Chemical Communications</i> , 2019 , 55, 6964-6996 Structuring Au nanoparticles on two-dimensional MoS nanosheets for electrochemical glucose biosensors. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 545-550 Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3. <i>Biosensors and Bioelectronics</i> , 2013 , 43, 25-9	5.8 11.8 11.8	139 134 134
239 238 237 236	Application of artificial adrenergic receptor in enzyme-linked assay for beta-agonists determination. <i>Analytical Chemistry</i> , 2000 , 72, 4381-5 A repertoire of biomedical applications of noble metal nanoparticles. <i>Chemical Communications</i> , 2019 , 55, 6964-6996 Structuring Au nanoparticles on two-dimensional MoS nanosheets for electrochemical glucose biosensors. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 545-550 Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3. <i>Biosensors and Bioelectronics</i> , 2013 , 43, 25-9 Microbial detection. <i>Biosensors and Bioelectronics</i> , 1996 , 11, 455-77 Ink-jet printing for the fabrication of amperometric glucose biosensors. <i>Analytica Chimica Acta</i> ,	5.8 11.8 11.8 11.8	139 134 134
239 238 237 236 235	Application of artificial adrenergic receptor in enzyme-linked assay for beta-agonists determination. <i>Analytical Chemistry</i> , 2000 , 72, 4381-5 A repertoire of biomedical applications of noble metal nanoparticles. <i>Chemical Communications</i> , 2019 , 55, 6964-6996 Structuring Au nanoparticles on two-dimensional MoS nanosheets for electrochemical glucose biosensors. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 545-550 Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3. <i>Biosensors and Bioelectronics</i> , 2013 , 43, 25-9 Microbial detection. <i>Biosensors and Bioelectronics</i> , 1996 , 11, 455-77 Ink-jet printing for the fabrication of amperometric glucose biosensors. <i>Analytica Chimica Acta</i> , 1992 , 262, 13-17	5.8 11.8 11.8 11.8	139 134 134 131

231	Cholesterol self-powered biosensor. <i>Analytical Chemistry</i> , 2014 , 86, 9540-7	7.8	116
230	Organic phase enzyme electrodes. <i>Analytica Chimica Acta</i> , 1991 , 249, 1-15	6.6	111
229	Use of an electronic nose system for diagnoses of urinary tract infections. <i>Biosensors and Bioelectronics</i> , 2002 , 17, 893-9	11.8	110
228	Immunomagnetic separation with mediated flow injection analysis amperometric detection of viable Escherichia coli O157. <i>Analytical Chemistry</i> , 1998 , 70, 2380-6	7.8	108
227	Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system. <i>Biosensors and Bioelectronics</i> , 2004 , 20, 538-44	11.8	107
226	An assay for ascorbic acid based on polyaniline-coated microplates. <i>Analytical Chemistry</i> , 2000 , 72, 4296	-3,090	104
225	Application of natural receptors in sensors and assays. <i>Analytical Chemistry</i> , 2002 , 74, 3942-51	7.8	99
224	Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample. <i>Biosensors and Bioelectronics</i> , 2016 , 80, 566-573	11.8	98
223	An ultrasensitive molecularly-imprinted human cardiac troponin sensor. <i>Biosensors and Bioelectronics</i> , 2013 , 50, 492-8	11.8	98
222	Screen-printed amperometric biosensors for the rapid measurement of L- and D-amino acids. <i>Analyst, The</i> , 1999 , 124, 865-70	5	97
221	Ultrasensitive detection of human liver hepatocellular carcinoma cells using a label-free aptasensor. <i>Analytical Chemistry</i> , 2014 , 86, 4956-60	7.8	96
220	Polymer Cookery: Influence of Polymerization Conditions on the Performance of Molecularly Imprinted Polymers. <i>Macromolecules</i> , 2002 , 35, 7499-7504	5.5	96
219	Template-directed hierarchical self-assembly of graphene based hybrid structure for electrochemical biosensing. <i>Biosensors and Bioelectronics</i> , 2013 , 49, 53-62	11.8	95
218	Molecularly imprinted sorbent assays: recent developments and applications. <i>Chemistry - A European Journal</i> , 2009 , 15, 8100-7	4.8	93
217	Biosensors for environmental monitoring. <i>Biotechnology Advances</i> , 1995 , 13, 1-12	17.8	91
216	Catalytic Materials, Membranes, and Fabrication Technologies Suitable for the Construction of Amperometric Biosensors. <i>Analytical Chemistry</i> , 1995 , 67, 4594-4599	7.8	91
215	Electrochemical bacterial detection using poly(3-aminophenylboronic acid)-based imprinted polymer. <i>Biosensors and Bioelectronics</i> , 2017 , 93, 87-93	11.8	90
214	Disposable ruthenized screen-printed biosensors for pesticides monitoring. <i>Sensors and Actuators B: Chemical</i> , 1995 , 24, 85-89	8.5	89

(2010-1995)

213	Recent advances in amperometric glucose biosensors for in vivo monitoring. <i>Physiological Measurement</i> , 1995 , 16, 1-15	2.9	88
212	Development of an On-line Glucose Sensor for Fermentation Monitoring. <i>Biosensors</i> , 1987 , 3, 45-56		88
211	Hierachically Structured Hollow Silica Spheres for High Efficiency Immobilization of Enzymes. <i>Advanced Functional Materials</i> , 2013 , 23, 2162-2167	15.6	87
210	Mediated amperometric enzyme electrode incorporating peroxidase for the determination of hydrogen peroxide in organic solvents. <i>Analytica Chimica Acta</i> , 1991 , 245, 133-138	6.6	86
209	Mediated amperometric biosensors for d-galactose, glycolate and l-amino acids based on a ferrocene-modified carbon paste electrode. <i>Analytica Chimica Acta</i> , 1986 , 182, 103-112	6.6	86
208	Influence of initiator and different polymerisation conditions on performance of molecularly imprinted polymers. <i>Biosensors and Bioelectronics</i> , 2006 , 22, 381-7	11.8	84
207	A DNA piezoelectric biosensor assay coupled with a polymerase chain reaction for bacterial toxicity determination in environmental samples. <i>Analytica Chimica Acta</i> , 2000 , 418, 1-9	6.6	84
206	Improved procedures for immobilisation of oligonucleotides on gold-coated piezoelectric quartz crystals. <i>Biosensors and Bioelectronics</i> , 2002 , 17, 929-36	11.8	77
205	Electrocatalytic Currents from Single Enzyme Molecules. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2504-7	16.4	76
204	Design of molecular imprinted polymers compatible with aqueous environment. <i>Analytica Chimica Acta</i> , 2008 , 607, 54-60	6.6	75
203	An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro. <i>Biosensors and Bioelectronics</i> , 2000 , 15, 333-42	11.8	75
202	Novel hexacyanoferrate(III) modified graphite disc electrodes and their application in enzyme electrodes Part I. <i>Biosensors and Bioelectronics</i> , 1997 , 12, 1-9	11.8	73
201	Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite. <i>Biosensors and Bioelectronics</i> , 2016 , 77, 505-11	11.8	70
200	Current trends in biosensor research and development. Sensors and Actuators, 1989, 17, 433-450		70
199	Continuous sensing of hydrogen peroxide and glucose via quenching of the UV and visible luminescence of ZnO nanoparticles. <i>Mikrochimica Acta</i> , 2015 , 182, 1819-1826	5.8	69
198	Detection of TP53 mutation using a portable surface plasmon resonance DNA-based biosensor. <i>Biosensors and Bioelectronics</i> , 2005 , 20, 1939-45	11.8	69
197	Amperometric tetrathiafulvalene-mediated lactate electrode using lactate oxidase absorbed on carbon foil. <i>Analytica Chimica Acta</i> , 1990 , 234, 459-463	6.6	68
196	Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 497-503	11.8	67

195	Bioelectrochemical fuel cell and sensor based on a quinoprotein, alcohol dehydrogenase. <i>Enzyme and Microbial Technology</i> , 1983 , 5, 383-388	3.8	65
194	An Electrochemical Immunoassay for HER2 Detection. <i>Electroanalysis</i> , 2012 , 24, 735-742	3	64
193	In Situ Formation of Porous Molecularly Imprinted Polymer Membranes. <i>Macromolecules</i> , 2003 , 36, 735	2 ₅ 75357	' 64
192	Developments in bioassay methods for toxicity testing in water treatment. <i>TrAC - Trends in Analytical Chemistry</i> , 1996 , 15, 178-188	14.6	64
191	Custom synthesis of molecular imprinted polymers for biotechnological application. <i>Analytica Chimica Acta</i> , 2004 , 504, 123-130	6.6	63
190	Polyferrocenes as mediators in amperometric biosensors for glucose. <i>Analytica Chimica Acta</i> , 1993 , 281, 453-459	6.6	63
189	On/Off-switchable zipper-like bioelectronics on a graphene interface. <i>Advanced Materials</i> , 2014 , 26, 48.	2-164	62
188	Controlled release of the herbicide simazine from computationally designed molecularly imprinted polymers. <i>Journal of Controlled Release</i> , 2005 , 108, 132-9	11.7	62
187	A Catalytic and Positively Thermosensitive Molecularly Imprinted Polymer. <i>Advanced Functional Materials</i> , 2011 , 21, 1194-1200	15.6	61
186	Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes. <i>FEBS Journal</i> , 2007 , 274, 5471-80	5.7	60
185	Electrochemical evaluation of troponin T imprinted polymer receptor. <i>Biosensors and Bioelectronics</i> , 2014 , 59, 160-5	11.8	58
184	Immunosensor for okadaic acid using quartz crystal microbalance. <i>Analytica Chimica Acta</i> , 2002 , 471, 33-40	6.6	58
183	On the use of screen- and ink-jet printing to produce amperometric enzyme electrodes for lactate. <i>Biosensors and Bioelectronics</i> , 1996 , 11, 263-270	11.8	58
182	Biosensors for marine pollution research, monitoring and control. <i>Marine Pollution Bulletin</i> , 2002 , 45, 24-34	6.7	57
181	Hierarchical Aerographite nano-microtubular tetrapodal networks based electrodes as lightweight supercapacitor. <i>Nano Energy</i> , 2017 , 34, 570-577	17.1	55
180	A novel third generation uric acid biosensor using uricase electro-activated with ferrocene on a Nafion coated glassy carbon electrode. <i>Bioelectrochemistry</i> , 2015 , 102, 1-9	5.6	55
179	Recognition of anaerobic bacterial isolates in vitro using electronic nose technology. <i>Letters in Applied Microbiology</i> , 2002 , 35, 366-9	2.9	54
178	Coupling of a DNA piezoelectric biosensor and polymerase chain reaction to detect apolipoprotein E polymorphisms. <i>Biosensors and Bioelectronics</i> , 2000 , 15, 363-70	11.8	54

(2013-2005)

177	Polymer Cookery: Influence of Polymerization Time and Different Initiation Conditions on Performance of Molecularly Imprinted Polymers. <i>Macromolecules</i> , 2005 , 38, 1410-1414	5.5	53	
176	A Zipper-Like On/Off-Switchable Molecularly Imprinted Polymer. <i>Advanced Functional Materials</i> , 2011 , 21, 3344-3349	15.6	52	
175	Biotin-specific synthetic receptors prepared using molecular imprinting. <i>Analytica Chimica Acta</i> , 2004 , 504, 179-183	6.6	52	
174	Surface functionalization of porous polypropylene membranes with polyaniline for protein immobilization. <i>Biotechnology and Bioengineering</i> , 2003 , 82, 86-92	4.9	52	
173	Dn/offEwitchable catalysis by a smart enzyme-like imprinted polymer. <i>Journal of Catalysis</i> , 2011 , 278, 173-180	7.3	51	
172	Towards the development of multisensor for drugs of abuse based on molecular imprinted polymers. <i>Analytica Chimica Acta</i> , 2005 , 542, 111-117	6.6	51	
171	Carbon monoxide :acceptor oxidoreductase from Pseudomonas thermocarboxydovorans strain C2 and its use in a carbon monoxide sensor. <i>Analytica Chimica Acta</i> , 1984 , 163, 161-174	6.6	51	
170	Direct monitoring of formaldehyde vapour and detection of ethanol vapour using dehydrogenase-based biosensors. <i>Analyst, The</i> , 1996 , 121, 1769	5	49	
169	Solvent-resistant carbon electrodes screen printed onto plastic for use in biosensors. <i>Analytica Chimica Acta</i> , 1997 , 347, 9-18	6.6	47	
168	Biosensors: then and now. <i>Trends in Biotechnology</i> , 2013 , 31, 119-20	15.1	46	
167	Characterisation of Screen-Printed Electrodes for Detection of Heavy Metals. <i>Mikrochimica Acta</i> , 1999 , 131, 65-73	5.8	46	
166	Lactate, glutamate and glutamine biosensors based on rhodinised carbon electrodes. <i>Analytica Chimica Acta</i> , 1994 , 295, 243-251	6.6	46	
165	Immunosensor for 2,4-dichlorophenoxyacetic acid in aqueous/organic solvent soil extracts. <i>Analytical Chemistry</i> , 1998 , 70, 5047-53	7.8	45	
164	Organic phase enzyme electrodes for the determination of hydrogen peroxide and phenol. <i>Sensors and Actuators B: Chemical</i> , 1992 , 7, 408-411	8.5	45	
163	Development of an electrochemical method for the rapid determination of microbial concentration and evidence for the reaction mechanism. <i>Analytica Chimica Acta</i> , 1988 , 215, 61-69	6.6	45	
162	Polymer Cookery. 2. Influence of Polymerization Pressure and Polymer Swelling on the Performance of Molecularly Imprinted Polymers. <i>Macromolecules</i> , 2004 , 37, 5018-5022	5.5	44	
161	Development of a mass-producible glucose biosensor and flow-injection analysis system suitable for on-line monitoring during fermentations. <i>Analytica Chimica Acta</i> , 1996 , 321, 165-172	6.6	44	
160	On/off-switchable electrochemical folic acid sensor based on molecularly imprinted polymer electrode. <i>Electrochemistry Communications</i> , 2013 , 36, 92-95	5.1	43	

159	Adaptation of the molecular imprinted polymers towards polar environment. <i>Analytica Chimica Acta</i> , 2005 , 542, 47-51	6.6	43
158	Amperometric enzyme electrode for the determination of phenols in chloroform. <i>Enzyme and Microbial Technology</i> , 1988 , 10, 543-546	3.8	43
157	Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing. <i>Biosensors and Bioelectronics</i> , 2018 , 100, 374-381	11.8	41
156	Bioelectrocatalytic systems for health applications. <i>Biotechnology Advances</i> , 2016 , 34, 177-97	17.8	41
155	Gas-Phase Microbiosensor for Monitoring Phenol Vapor at ppb Levels. <i>Analytical Chemistry</i> , 1995 , 67, 3922-3927	7.8	41
154	Investigations of platinized and rhodinized carbon electrodes for use in glucose sensors. <i>Electroanalysis</i> , 1994 , 6, 625-632	3	41
153	Biosensors for process control. <i>Enzyme and Microbial Technology</i> , 1991 , 13, 946-55	3.8	41
152	Soft and flexible material-based affinity sensors. <i>Biotechnology Advances</i> , 2020 , 39, 107398	17.8	41
151	Applications of electron transfer between biological systems and electrodes. <i>Biochemical Society Transactions</i> , 1983 , 11, 445-8	5.1	39
150	Selection of thrombin-binding aptamers by using computational approach for aptasensor application. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 4411-6	11.8	38
149	Amperometric enzyme-amplified immunoassays. <i>Journal of Immunological Methods</i> , 1988 , 112, 153-61	2.5	38
148	Detection of p53 gene point mutation using sequence-specific molecularly imprinted PoPD electrode. <i>Biosensors and Bioelectronics</i> , 2012 , 35, 224-229	11.8	37
147	Integrated Printed Microfluidic Biosensors. <i>Trends in Biotechnology</i> , 2019 , 37, 1104-1120	15.1	36
146	Ruthenized screen-printed choline oxidase-based biosensors for measurement of anticholinesterase activity. <i>Mikrochimica Acta</i> , 1995 , 121, 155-166	5.8	36
145	TTF-Modified Biosensors for Hydrogen Peroxide. <i>Analytical Letters</i> , 1994 , 27, 1443-1452	2.2	36
144	An Enzyme Electrode for Glucose Consisting of Glucose Oxidase Immobilised at a Benzoquinone-Modified Carbon Electrode. <i>Analytical Letters</i> , 1991 , 24, 15-24	2.2	36
143	Influence of poly(n-isopropylacrylamide)-CNT-polyaniline three-dimensional electrospun microfabric scaffolds on cell growth and viability. <i>Biopolymers</i> , 2013 , 99, 334-41	2.2	34
142	Bite-and-Switch Approach to Creatine Recognition by Use of Molecularly Imprinted Polymers. <i>Advanced Materials</i> , 2000 , 12, 722-724	24	34

(2009-2015)

141	Band edge engineering of TiO2@DNA nanohybrids and implications for capacitive energy storage devices. <i>Nanoscale</i> , 2015 , 7, 10438-48	7.7	33
140	A high-performance glucose biosensor using covalently immobilised glucose oxidase on a poly(2,6-diaminopyridine)/carbon nanotube electrode. <i>Talanta</i> , 2013 , 116, 801-8	6.2	33
139	The synthesis and screening of a combinatorial peptide library for affinity ligands for glycosylated haemoglobin. <i>Biosensors and Bioelectronics</i> , 1998 , 13, 779-85	11.8	33
138	Generic Neutravidin Biosensor for Simultaneous Multiplex Detection of MicroRNAs via Electrochemically Encoded Responsive Nanolabels. <i>ACS Sensors</i> , 2019 , 4, 326-334	9.2	32
137	Capillary electrophoresis coupled to biosensor detection. <i>Journal of Chromatography A</i> , 2000 , 892, 143-	-5₄ .5	32
136	Interference-Free Electrochemical Detection of Nanomolar Dopamine Using Doped Polypyrrole and Silver Nanoparticles. <i>Electroanalysis</i> , 2014 , 26, 2197-2206	3	31
135	MRI-visual order-disorder micellar nanostructures for smart cancer theranostics. <i>Advanced Healthcare Materials</i> , 2014 , 3, 526-35	10.1	31
134	Label-Free Electrochemical Detection of Tetracycline by an Aptamer Nano-Biosensor. <i>Analytical Letters</i> , 2012 , 45, 986-992	2.2	31
133	Electrocatalytic biofuel cell based on highly efficient metal-polymer nano-architectured bioelectrodes. <i>Nano Energy</i> , 2017 , 39, 601-607	17.1	29
132	On/off-switchable LSPR nano-immunoassay for troponin-T. <i>Scientific Reports</i> , 2017 , 7, 44027	4.9	29
131	Surface-Engineered Contact Lens as an Advanced Theranostic Platform for Modulation and Detection of Viral Infection. <i>ACS Applied Materials & Detection of Viral Infection (Note: Acs Applied Materials & Detection (Note: Acs Applied Materials &</i>	9.5	29
130	The application of polythiol molecules for protein immobilisation on sensor surfaces. <i>Biosensors and Bioelectronics</i> , 2010 , 25, 1049-55	11.8	28
129	Application of molecularly imprinted polymers in sensors for the environment and biotechnology. <i>Sensor Review</i> , 2001 , 21, 292-296	1.4	28
128	Switchable bioelectronics. <i>Biosensors and Bioelectronics</i> , 2016 , 76, 251-65	11.8	27
127	Type I Collagen-Derived Injectable Conductive Hydrogel Scaffolds as Glucose Sensors. <i>ACS Applied Materials & Design Communication (Natural Scale)</i> 10, 16244-16249	9.5	27
126	The potential legacy of cancer nanotechnology: cellular selection. <i>Trends in Biotechnology</i> , 2014 , 32, 21	-315.1	27
125	Electrochemical sensing systems for arsenate estimation by oxidation of L-cysteine. <i>Ecotoxicology</i> and Environmental Safety, 2010 , 73, 1495-501	7	27
124	New reactive polymer for protein immobilisation on sensor surfaces. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 1365-71	11.8	27

123	Detection of pesticide by polymeric enzyme electrodes. <i>Ecotoxicology and Environmental Safety</i> , 2008 , 69, 556-61	7	27
122	Properties of poly-aminophenylboronate coatings in capillary electrophoresis for the selective separation of diastereoisomers and glycoproteins. <i>Journal of Chromatography A</i> , 2004 , 1023, 297-303	4.5	27
121	A novel optical biosensor format for the detection of clinically relevant TP53 mutations. <i>Biosensors and Bioelectronics</i> , 2005 , 20, 2310-3	11.8	27
120	Switchable Bioelectrocatalysis Controlled by Dual Stimuli-Responsive Polymeric Interface. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 1, 23837-47	9.5	26
119	Monitoring of the glucose concentration during microbial fermentation using a novel mass-producible biosensor suitable for on-line use. <i>Enzyme and Microbial Technology</i> , 1997 , 20, 590-596	3.8	26
118	Biosensors. Current Opinion in Biotechnology, 1994 , 5, 49-53	11.4	26
117	Acetylene-sourced CVD-synthesised catalytically active graphene for electrochemical biosensing. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 496-504	11.8	25
116	Artificial Muscles Powered by Glucose. <i>Advanced Materials</i> , 2019 , 31, e1901677	24	25
115	pH-induced on/off-switchable graphene bioelectronics. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 7434-7	7 4 339	25
114	Application of electrical impedance spectroscopy and amperometry in polyaniline modified ammonia gas sensor. <i>Synthetic Metals</i> , 2013 , 175, 127-133	3.6	25
113	Tunable conjugated polymers for bacterial differentiation. <i>Sensors and Actuators B: Chemical</i> , 2016 , 222, 839-848	8.5	24
112	A novel enzyme entrapment in SU-8 microfabricated films for glucose micro-biosensors. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 1582-7	11.8	24
111	Photochemical polymerization of thiophene derivatives in aqueous solution. <i>Chemical Communications</i> , 2004 , 2222-3	5.8	24
110	Rapid determination of the glucose content of molasses using a biosensor. <i>Analyst, The</i> , 1989 , 114, 375-	· 9 ;	24
109	Positively-charged hierarchical PEDOT interface with enhanced electrode kinetics for NADH-based biosensors. <i>Biosensors and Bioelectronics</i> , 2018 , 120, 115-121	11.8	23
108	Amperometric biosensor for formic acid in air. Sensors and Actuators B: Chemical, 2000, 70, 182-187	8.5	23
107	Tunable 3D nanofibrous and bio-functionalised PEDOT network explored as a conducting polymer-based biosensor. <i>Biosensors and Bioelectronics</i> , 2020 , 159, 112181	11.8	22
106	Development of a pyrroloquinoline quinone (PQQ) mediated glucose oxidase enzyme electrode for detection of glucose in fruit juice. <i>Electroanalysis</i> , 1996 , 8, 870-875	3	22

105	Amperometric biosensors based on mediator-modified electrodes. <i>Methods in Enzymology</i> , 1988 , 137, 90-103	1.7	22
104	Modulating Electrode Kinetics for Discrimination of Dopamine by a PEDOT:COOH Interface Doped with Negatively Charged Tricarboxylate. <i>ACS Applied Materials & Doped Materials </i>	9.5	21
103	Structurally responsive oligonucleotide-based single-probe lateral-flow test for detection of miRNA-21 mimics. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 1475-85	4.4	21
102	Design of novel molecular wires for realizing long-distance electron transfer. <i>Bioelectrochemistry</i> , 1997 , 42, 25-33		21
101	On-line monitoring of glucose, glutamate and glutamine during mammalian cell cultivations. <i>Biosensors and Bioelectronics</i> , 1995 , 10, 543-51	11.8	21
100	Water-processable polypyrrole microparticle modules for direct fabrication of hierarchical structured electrochemical interfaces. <i>Electrochimica Acta</i> , 2016 , 190, 495-503	6.7	20
99	Studies on an on/off-switchable immunosensor for troponin T. <i>Biosensors and Bioelectronics</i> , 2015 , 73, 100-107	11.8	20
98	Biosensors in air monitoring. <i>Journal of Environmental Monitoring</i> , 1999 , 1, 293-8		20
97	Label-free DNA sensor based on diazonium immobilisation for detection of DNA damage in breast cancer 1 gene. <i>Sensors and Actuators B: Chemical</i> , 2018 , 264, 59-66	8.5	19
96	Development of a piezoelectric sensor for the detection of methamphetamine. <i>Analyst, The</i> , 2009 , 134, 1565-70	5	19
95	Assessment of glucose oxidase behaviour in alcoholic solutions using disposable electrodes. <i>Analytica Chimica Acta</i> , 1998 , 368, 219-231	6.6	19
94	Amperometric detection of histamine at a quinoprotein dehydrogenase enzyme electrode. <i>Biosensors and Bioelectronics</i> , 1995 , 10, 569-76	11.8	19
93	Self-Reporting Micellar Polymer Nanostructures for Optical Urea Biosensing. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 8509-8514	3.9	18
92	Amperometric biosensor based on Prussian Blue nanoparticle-modified screen-printed electrode for estimation of glucose-6-phosphate. <i>Analytical Biochemistry</i> , 2013 , 439, 194-200	3.1	18
91	Influence of continuous magnetic field on the separation of ephedrine enantiomers by molecularly imprinted polymers. <i>Biosensors and Bioelectronics</i> , 2008 , 23, 1189-94	11.8	18
90	Repartition effect of aromatic polyaniline coatings on the separation of bioactive peptides in capillary electrophoresis. <i>Electrophoresis</i> , 2002 , 23, 203-8	3.6	18
89	Development of an integrated capillary electrophoresis/sensor for L-ascorbic acid detection. <i>Electrophoresis</i> , 2002 , 23, 209-14	3.6	18
88	A new reactive polymer suitable for covalent immobilisation and monitoring of primary amines. <i>Polymer</i> , 2001 , 42, 3603-3608	3.9	18

87	A new approach for creating double-stranded DNA biosensors. <i>Biosensors and Bioelectronics</i> , 1996 , 11, 903-11	11.8	18
86	Programmable bioelectronics in a stimuli-encoded 3D graphene interface. <i>Nanoscale</i> , 2016 , 8, 9976-81	7.7	18
85	An electrochemical dopamine sensor based on the ZnO/CuO nanohybrid structures. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 6646-52	1.3	17
84	Detection of Polychlorinated Biphenyls (PCBs) in Milk using a Disposable Immunomagnetic Electrochemical Sensor. <i>Analytical Letters</i> , 2007 , 40, 1371-1385	2.2	17
83	Biosensors for Measurement and Control. <i>Measurement and Control</i> , 1987 , 20, 37-43	1.5	17
82	Neutravidin biosensor for direct capture of dual-functional biotin-molecular beacon-AuNP probe for sensitive voltammetric detection of microRNA. <i>Sensors and Actuators B: Chemical</i> , 2017 , 248, 77-84	8.5	16
81	Two-Dimensional Gold-Tungsten Disulphide Bio-Interface for High-Throughput Electrocatalytic Nano-Bioreactors. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1400136	4.6	16
80	Electrochemical detection of DNA damage through visible-light-induced ROS using mesoporous TiO2 microbeads. <i>Electrochemistry Communications</i> , 2014 , 40, 84-87	5.1	16
79	Processable and nanofibrous polyaniline:polystyrene-sulphonate (nano-PANI:PSS) for the fabrication of catalyst-free ammonium sensors and enzyme-coupled urea biosensors. <i>Biosensors and Bioelectronics</i> , 2021 , 171, 112725	11.8	16
78	Intelligent ECM mimetic injectable scaffolds based on functional collagen building blocks for tissue engineering and biomedical applications. <i>RSC Advances</i> , 2017 , 7, 21068-21078	3.7	15
77	Amperometric L-arginine biosensor based on a novel recombinant arginine deiminase. <i>Mikrochimica Acta</i> , 2017 , 184, 2679-2686	5.8	15
76	Enzymatic Analysis Using Quinoprotein Dehydrogenases. <i>Annals of the New York Academy of Sciences</i> , 1987 , 501, 283-287	6.5	15
75	A self-switchable Ag nanoreactor exhibiting outstanding catalytic properties. <i>Chemical Communications</i> , 2014 , 50, 118-20	5.8	14
74	New electrochemical sensors. <i>Analytical Proceedings</i> , 1991 , 28, 366		14
73	Multifactorial modeling and optimization of solution and electrospinning parameters to generate superfine polystyrene nanofibers. <i>Advances in Polymer Technology</i> , 2018 , 37, 2743-2755	1.9	13
72	Inflammation-sensitive in situ smart scaffolding for regenerative medicine. <i>Nanoscale</i> , 2016 , 8, 17213-1	7 7.7 2	13
71	Evaluation of an FIA Operated Amperometric Bacterial Biosensor, Based on Pseudomonas Putida F1 for the Detection of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX). <i>Analytical Letters</i> , 2005 , 38, 1531-1547	2.2	13
70	Measurement of meat freshness in situ with a biosensor array. Food Control, 1993, 4, 149-154	6.2	13

69	Biosensors: a revolution in clinical analysis?. <i>Endeavour</i> , 1987 , 11, 100-4	0.5	13
68	Perspective A n Age of Sensors		13
67	Stimuli-enabled zipper-like graphene interface for auto-switchable bioelectronics. <i>Biosensors and Bioelectronics</i> , 2017 , 89, 305-311	11.8	12
66	Controlled Zn-mediated grafting of thin layers of bipodal diazonium salt on gold and carbon substrates. <i>Chemistry - A European Journal</i> , 2015 , 21, 671-81	4.8	12
65	Light-Triggered Switchable Graphene Polymer Hybrid Bioelectronics. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500353	4.6	12
64	Unsubstituted phenothiazine as a superior water-insoluble mediator for oxidases. <i>Biosensors and Bioelectronics</i> , 2014 , 53, 275-82	11.8	12
63	Towards the development of an integrated capillary electrophoresis optical biosensor. <i>Electrophoresis</i> , 2003 , 24, 3356-63	3.6	12
62	Analytical applications of immobilised proteins and cells. <i>Journal of Microbiological Methods</i> , 1988 , 8, 1-50	2.8	12
61	Facile synthesis of highly processable and water dispersible polypyrrole and poly(3,4-ethylenedioxythiophene) microspheres for enhanced supercapacitive performance. <i>European Polymer Journal</i> , 2018 , 99, 332-339	5.2	11
60	Direct detection of ammonium ion by means of oxygen electrocatalysis at a copper-polyaniline composite on a screen-printed electrode. <i>Mikrochimica Acta</i> , 2016 , 183, 1981-1987	5.8	11
59	On/off-switchable anti-neoplastic nanoarchitecture. <i>Scientific Reports</i> , 2015 , 5, 14571	4.9	11
58	A Label Free Electrochemical Nanobiosensor Study. <i>Analytical Letters</i> , 2009 , 42, 2905-2913	2.2	11
57	Electrochemical Assay Method for the Rapid Determination of Oxidase Enzyme Activities. <i>Biotechnology Letters</i> , 1998 , 12, 123-127		11
56	Tuning the Surface Properties of Polypyrrole Films for Modulating Bacterial Adhesion. <i>Macromolecular Chemistry and Physics</i> , 2016 , 217, 1128-1135	2.6	11
55	A potential-gated molecularly imprinted smart electrode for nicotinamide analysis. <i>RSC Advances</i> , 2015 , 5, 35089-35096	3.7	10
54	Detection of silage effluent pollution in river water using biosensors. Water Research, 1997, 31, 41-48	12.5	10
53	New Materials Based on Imprinted Polymers and their Application in Optical Sensors 2002, 397-425		9
52	Doping Polypyrrole Films with 4-N-Pentylphenylboronic Acid to Enhance Affinity towards Bacteria and Dopamine. <i>PLoS ONE</i> , 2016 , 11, e0166548	3.7	9

51	Cholesterol Oxidase Functionalised Polyaniline/Carbon Nanotube Hybrids for an Amperometric Biosensor. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 3373-7	1.3	8
50	Electrochemical Acetylcholine Chloride Biosensor Using an Acetylcholine Esterase Biomimic. <i>Analytical Letters</i> , 2008 , 41, 1387-1397	2.2	8
49	Nano-Porous Light-Emitting Silicon Chip as a Potential Biosensor Platform. <i>Analytical Letters</i> , 2007 , 40, 1549-1555	2.2	8
48	A gas-phase biosensor for environmental monitoring of formic acid: laboratory and field validation. <i>Journal of Environmental Monitoring</i> , 2003 , 5, 477-82		8
47	Preliminary investigation of a bioelectrochemical sensor for the detection of phenol vapours. <i>Biosensors and Bioelectronics</i> , 1995 , 10, 945-957	11.8	8
46	Applications of CO-utilizing microorganisms. <i>Trends in Biotechnology</i> , 1985 , 3, 12-17	15.1	8
45	Correspondence on Lan Nanoimpacts Detect Single-Enzyme Activity? Theoretical Considerations and an Experimental Study of Catalase Impacts (IACS Catalysis, 2017, 7, 3591-3593)	13.1	7
44	Printable Heterostructured Bioelectronic Interfaces with Enhanced Electrode Reaction Kinetics by Intermicroparticle Network. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 33368-33376	9.5	7
43	Amperometric detection of Francisella tularensis genomic sequence on Zn-mediated diazonium modified substrates. <i>Electrochemistry Communications</i> , 2015 , 53, 6-10	5.1	7
42	Patterned gallium surfaces as molecular mirrors. <i>Biosensors and Bioelectronics</i> , 2007 , 23, 290-4	11.8	7
41	Biosensors and bioelectronics 20 years on. <i>Biosensors and Bioelectronics</i> , 2005 , 20, 2387	11.8	7
40	Synthesis of biologically active molecules by imprinting polymerisation. <i>Biopolymers and Cell</i> , 2006 , 22, 63-67	0.3	7
39	Biosensors And Bioelectronics. Advanced Materials Letters, 2011 , 2, 82-83	2.4	6
38	Multivariate evaluation of factors influencing the performance of a formic acid biosensor for use in air monitoring. <i>Analyst, The</i> , 2001 , 126, 2008-14	5	6
37	Electrochemical performance of nanofibrous highly flexible electrodes enhanced by different structural configurations. <i>Composites Science and Technology</i> , 2018 , 155, 81-90	8.6	6
36	Molecularly Imprinted Polymers for Enzyme-like Catalysis: Principle, Design, and Applications 2016 , 1-1	7	5
35	Electron transfer from diaphorase in water/triton X-100/butyl acetate microemulsion. <i>Electroanalysis</i> , 1994 , 6, 217-220	3	5
34	Effect of Electrophoresis on the Efficiency of Graphite-Nano-TiO2 Modified Silica Sol-Gel Electrode. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 3405-10	1.3	4

33	Chapter 15 Ultra-sensitive determination of pesticides via cholinesterase-based sensors for environmental analysis. <i>Comprehensive Analytical Chemistry</i> , 2007 , 49, 311-330	1.9	4
32	Laser ice scaffolds modeling for tissue engineering. Laser Physics Letters, 2005 , 2, 465-467	1.5	4
31	A fixed film bioassay for the detection of micropollutants toxic to anaerobic sludges. <i>Analytica Chimica Acta</i> , 1994 , 298, 1-10	6.6	4
30	Biosensors in organic phases. <i>Biochemical Society Transactions</i> , 1991 , 19, 28-31	5.1	4
29	Colormetric detection of horseradish peroxidase labelled DNA using a new chromogen system. <i>Biotechnology Letters</i> , 1987 , 1, 129-134		4
28	Conducting Polymer-Reinforced Laser-Irradiated Graphene as a Heterostructured 3D Transducer for Flexible Skin Patch Biosensors. <i>ACS Applied Materials & Discrete Sciences</i> , 2021 , 13, 54456-54465	9.5	4
27	Electrochemical detection of DNA mismatches using a branch-shaped hierarchical SWNT-DNA nano-hybrid bioelectrode. <i>Materials Science and Engineering C</i> , 2019 , 104, 109886	8.3	3
26	Historical Perspective of Biosensor and Biochip Development 2008,		3
25	IMPRINTED POLYMERS AND THEIR APPLICATION IN OPTICAL SENSORS 2008, 543-581		3
24	An inexpensive method for ultra-rapid detection of microbial contamination in industrial fluids. <i>International Biodeterioration</i> , 1989 , 25, 137-145		3
23	One-Dimensional Polyaniline Nanotubes for Enhanced Chemical and Biochemical Sensing. <i>Lecture Notes in Electrical Engineering</i> , 2011 , 311-315	0.2	3
22	Graphene-based Electrochemical Biosensors: New Trends and Applications 2017 , 427-448		2
21	Bi-functional sulphonate-coupled reduced graphene oxide as an efficient dopant for a conducting polymer with enhanced electrochemical performance. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 12829-1	28 39	2
20	Optical biosensors based on universal pH indicator as a reporter for quantification of clinically relevant compounds. <i>Journal of the Chinese Advanced Materials Society</i> , 2014 , 2, 99-109		2
19	Molecularly Imprinted Nanomaterial-Based Highly Sensitive and Selective Medical Devices 2012 , 339-39	1	2
18	Biosensors 2012. <i>Biosensors and Bioelectronics</i> , 2013 , 40, 1-2	11.8	2
17	New Micro- and Nanotechnologies for Electrochemical Biosensor Development 2011 , 1-35		2
16	Ammonium ion requirement and stability of methanol dehydrogenase TTFLTCNQ electrodes. <i>Analyst, The</i> , 1996 , 121, 1711-1715	5	2

15	Redox Mediators and Their Application in Amperometric Sensors 1988, 131-140		2
14	Lanthanide [Terbium(III)]-Doped Molecularly Imprinted Nanoarchitectures for the Fluorimetric Detection of Melatonin. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 16068-16076	3.9	2
13	Enabling Mobile Health. <i>Procedia Technology</i> , 2017 , 27, 4-5		1
12	Hierarchical Structures: Hierachically Structured Hollow Silica Spheres for High Efficiency Immobilization of Enzymes (Adv. Funct. Mater. 17/2013). <i>Advanced Functional Materials</i> , 2013 , 23, 2102-	2 502	1
11	Editorial Introduction for the Special Issue of the Sensors Journal: In Vivo Sensors for Medicine. <i>IEEE Sensors Journal</i> , 2008 , 8, 3-5	4	1
10	Procedure 24 Construction of an enzyme-containing microelectrode array and use for detection of low levels of pesticides. <i>Comprehensive Analytical Chemistry</i> , 2007 , e169-e176	1.9	1
9	Modified Enzyme Electrodes 1993 , 263-269		1
8	Precise and rapid solvent-assisted geometric protein self-patterning with submicron spatial resolution for scalable fabrication of microelectronic biosensors. <i>Biosensors and Bioelectronics</i> , 2021 , 177, 112968	11.8	1
7	Implanted Sensors. Springer Series on Chemical Sensors and Biosensors, 2012, 159-189	2	
6	Biosensors, Aptamers (Aptasensors) 2010 , 1		
5	Amperometric Biosensors Based on Modified Porous Graphite Electrodes. <i>Annals of the New York Academy of Sciences</i> , 1987 , 501, 551-552	6.5	
4	Mediated Enzyme Electrodes 10 Years On 1994 , 51-52		
3	Affinity Biosensing: Recent Advances in Surface Plasmon Resonance for Molecular Diagnostics55-88		
2	Biosensor Based on Chitosan Nanocomposite277-307		

1

Bioprocess Monitoring1