
Sheng-Dong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3264994/publications.pdf Version: 2024-02-01

SHENG-DONG ZHANG

#	Article	IF	CITATIONS
1	Porphyrin-Based All-Small-Molecule Organic Solar Cells With Absorption-Complementary Nonfullerene Acceptor. IEEE Journal of Photovoltaics, 2022, 12, 316-321.	2.5	3
2	A High-Efficiency Segmented Reconfigurable Cyclic Shifter for 5G QC-LDPC Decoder. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 401-414.	5.4	5
3	A Low Power and IR Drop Compensable AMOLED Pixel Circuit Based on Low-Temperature Poly-Si and Oxide (LTPO) TFTs Hybrid Technology. IEEE Journal of the Electron Devices Society, 2022, 10, 51-58.	2.1	13
4	Roles of Hot Carriers in Dynamic Self-Heating Degradation of a-InGaZnO Thin-Film Transistors. IEEE Electron Device Letters, 2022, 43, 40-43.	3.9	6
5	High-Performance Self-Aligned Top-Gate Amorphous InGaZnO TFTs With 4 nm-Thick Atomic-Layer-Deposited AlO _x Insulator. IEEE Electron Device Letters, 2022, 43, 729-732.	3.9	14
6	Al Reaction-Induced Conductive a-InGaZnO as Pixel Electrode for Active-Matrix Quantum-Dot LED Displays. IEEE Electron Device Letters, 2022, 43, 749-752.	3.9	3
7	Abnormal Bias Instabilities Induced by Lateral H ₂ O Diffusion Into Top-Gate Insulator of a-InGaZnO Thin-Film Transistors. IEEE Journal of the Electron Devices Society, 2022, 10, 341-345.	2.1	11
8	Self-Compensation Effect of Photo-Bias Instabilities in a-InGaZnO Thin-Film Transistors Induced by Unique Ion Migration. IEEE Transactions on Electron Devices, 2022, 69, 3206-3212.	3.0	3
9	Compact Integration of Hydrogen–Resistant a–InGaZnO and Poly–Si Thin–Film Transistors. Micromachines, 2022, 13, 839.	2.9	4
10	Competition between heating and cooling during dynamic self-heating degradation of amorphous InGaZnO thin-film transistors. Solid-State Electronics, 2022, 195, 108393.	1.4	3
11	Thorough Elimination of Persistent Photoconduction in Amorphous InZnO Thin-Film Transistor via Dual-Gate Pulses. IEEE Electron Device Letters, 2022, 43, 1247-1250.	3.9	4
12	Mixedâ€Dimensional van der Waals Engineering for Charge Transfer Enables Wafer‣evel Flexible Electronics. Advanced Functional Materials, 2022, 32, .	14.9	6
13	Intrinsically flexible all-carbon-nanotube electronics enabled by a hybrid organic–inorganic gate dielectric. Npj Flexible Electronics, 2022, 6, .	10.7	9
14	Pseudo Multi-Port SRAM Circuit for Image Processing in Display Drivers. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31, 2056-2062.	8.3	1
15	Pixellated Perovskite Photodiode on IGZO Thin Film Transistor Backplane for Low Dose Indirect X-Ray Detection. IEEE Journal of the Electron Devices Society, 2021, 9, 96-101.	2.1	11
16	Capacitor Reused Gate Driver for Compact In-Cell Touch Displays. IEEE Journal of the Electron Devices Society, 2021, 9, 533-538.	2.1	2
17	Low-temperature supercritical dehydroxylation for achieving an ultra-low subthreshold swing of thin-film transistors. Nanoscale, 2021, 13, 5700-5705.	5.6	8
18	Self-Aligned Top-Gate Amorphous Zinc-Tin Oxide Thin-Film Transistor With Source/Drain Regions Doped by Al Reaction. IEEE Journal of the Electron Devices Society, 2021, 9, 653-657.	2.1	6

#	Article	IF	CITATIONS
19	Metal Reaction-Induced Bulk-Doping Effect in Forming Conductive Source-Drain Regions of Self-Aligned Top-Gate Amorphous InGaZnO Thin-Film Transistors. ACS Applied Materials & Interfaces, 2021, 13, 11442-11448.	8.0	33
20	A compact gate driver with bifunctional capacitor for in ell touch mobile display. Journal of the Society for Information Display, 2021, 29, 526.	2.1	2
21	Segmented Reconfigurable Cyclic Shifter for QC-LDPC Decoder. , 2021, , .		1
22	Pâ€15: <i>Student Poster:</i> Reliable Gate Driver for Realâ€Time External Compensated AMOLED Display Using InGaZnO TFTs. Digest of Technical Papers SID International Symposium, 2021, 52, 1108-1111.	0.3	1
23	Large-area patterning of full-color quantum dot arrays beyond 1000 pixels per inch by selective electrophoretic deposition. Nature Communications, 2021, 12, 4603.	12.8	64
24	Supercritical Ammoniation-Enabled Interfacial Polarization for Function-Mode Transformation and Overall Optimization of Thin-Film Transistors. ACS Applied Materials & Interfaces, 2021, 13, 40053-40061.	8.0	3
25	Manipulation of epsilon-near-zero wavelength for the optimization of linear and nonlinear absorption by supercritical fluid. Scientific Reports, 2021, 11, 15936.	3.3	9
26	Reliable High-Performance Amorphous InGaZnO Schottky Barrier Diodes With Silicon Dioxide Passivation Layer. IEEE Electron Device Letters, 2021, 42, 1338-1341.	3.9	5
27	Fast Progressive Compensation Method for Externally Compensated AMOLED Displays. IEEE Journal of the Electron Devices Society, 2021, 9, 257-264.	2.1	2
28	Self-Heating Stress-Induced Severe Humps in Transfer Characteristics of Amorphous InGaZnO Thin-Film Transistors. IEEE Transactions on Electron Devices, 2021, 68, 6197-6201.	3.0	7
29	Investigating the Back-Channel Effect and Asymmetric Degradation Under Self-Heating Stress in Large Size a-InGaZnO TFTs. IEEE Electron Device Letters, 2020, 41, 58-61.	3.9	5
30	Analytical Drain Current and Capacitance Model for Amorphous InGaZnO TFTs Considering Temperature Characteristics. IEEE Transactions on Electron Devices, 2020, 67, 3637-3644.	3.0	3
31	Unveiling the influence of surrounding materials and realization of multi-level storage in resistive switching memory. Nanoscale, 2020, 12, 22070-22074.	5.6	8
32	Modeling of Both Arrhenius and Non-Arrhenius Temperature-Dependent Drain Current for Organic Thin-Film Transistors. IEEE Transactions on Electron Devices, 2020, 67, 5091-5096.	3.0	2
33	Systematic Defect Manipulation in Metal Oxide Semiconductors towards High-Performance Thin-Film Transistors. , 2020, , .		0
34	Top-Cate Amorphous Indium-Gallium-Zinc-OxideThin-Film Transistors With Magnesium Metallized Source/Drain Regions. IEEE Transactions on Electron Devices, 2020, 67, 1619-1624.	3.0	19
35	Enhanced Performance of Atomic Layer Deposited Thin-Film Transistors With High-Quality ZnO/Al ₂ O ₃ Interface. IEEE Transactions on Electron Devices, 2020, 67, 518-523.	3.0	20
36	Precise Tuning of Epsilon-Near-Zero Properties in Indium Tin Oxide Nanolayer by Supercritical Carbon Dioxide. , 2020, , .		2

3

#	Article	IF	CITATIONS
37	Fully Self-Aligned Homojunction Bottom-Gate Amorphous InGaZnO TFTs with Al Reacted Source/Drain Regions. , 2020, , .		0
38	Q-Cell: A Super Wide View Angle LCD Display with QD Polarizer. , 2019, , .		1
39	Homo-Junction Bottom-Gate Amorphous In–Ga–Zn–O TFTs With Metal-Induced Source/Drain Regions. IEEE Journal of the Electron Devices Society, 2019, 7, 52-56.	2.1	9
40	1.2: <i>Invited Paper:</i> Dynamic threshold voltage compensation IGZOâ€GOA circuit for AMOLED display. Digest of Technical Papers SID International Symposium, 2019, 50, 10-12.	0.3	5
41	Robust Gate Driver on Array Based on Amorphous IGZO Thin-Film Transistor for Large Size High-Resolution Liquid Crystal Displays. IEEE Journal of the Electron Devices Society, 2019, 7, 717-721.	2.1	17
42	Self-Aligned Top-Gate Amorphous InGaZnO TFTs With Plasma Enhanced Chemical Vapor Deposited Sub-10 nm SiO ₂ Gate Dielectric for Low-Voltage Applications. IEEE Electron Device Letters, 2019, 40, 1459-1462.	3.9	28
43	Enhancing Repetitive Uniaxial Mechanical Bending Endurance at \${R} = 2\$ mm Using an Organic Trench Structure in Foldable Low Temperature Poly-Si Thin-Film Transistors. IEEE Electron Device Letters, 2019, 40, 913-916.	3.9	11
44	An Energy-Band Model for Dual-Gate-Voltage Sweeping in Hydrogenated Amorphous Silicon Thin-Film Transistors. IEEE Transactions on Electron Devices, 2019, 66, 2614-2619.	3.0	4
45	Ultralow-voltage all-carbon low-dimensional-material flexible transistors integrated by room-temperature photolithography incorporated filtration. Nanoscale, 2019, 11, 15029-15036.	5.6	16
46	Pâ€28: Novel Asymmetric Sourceâ€drain Thin Film Transistors Fabricated by Atomic Layer Deposition. Digest of Technical Papers SID International Symposium, 2019, 50, 1317-1320.	0.3	0
47	Tilted LCD Pixel With Liquid Crystal GRIN Lens for Two-Dimensional/Three-Dimensional Switchable Display. IEEE Photonics Journal, 2019, 11, 1-9.	2.0	3
48	High-Performance ZnO Thin-Film Transistors Prepared by Atomic Layer Deposition. IEEE Transactions on Electron Devices, 2019, 66, 2965-2970.	3.0	25
49	Implementation of Self-Aligned Top-Gate Amorphous Zinc Tin Oxide Thin-Film Transistors. IEEE Electron Device Letters, 2019, 40, 901-904.	3.9	15
50	Enhancing Repetitive Uniaxial Mechanical Bending Endurance at R=2mm Using an Organic Trench Structure in Foldable Low Temperature Poly-Si Thin-Film Transistors. IEEE Electron Device Letters, 2019, , 1-1.	3.9	0
51	Effects of Ultraviolet Light on the Dual-Sweep <inline-formula> <tex-math notation="LaTeX">\$I\$ </tex-math </inline-formula> – <inline-formula> <tex-math notation="LaTeX">\$V\$ </tex-math> </inline-formula> Curve of a-InGaZnO₄ Thin-Film Transistor. IEEE Transactions on Electron Devices. 2019. 66. 1772-1777.</tex-math </inline-formula>	3.0	6
52	:Hydrogen Doping Oxide Transistors: Analysis of Ultrahigh Apparent Mobility in Oxide Fieldâ€Effect Transistors (Adv. Sci. 7/2019). Advanced Science, 2019, 6, 1970040.	11.2	6
53	A Quantum Dot Polarizer for Liquid Crystal Displays With Much Improved Efficiency and Viewing Angle. IEEE Journal of Quantum Electronics, 2019, 55, 1-6.	1.9	4
54	Abnormal \${C}\$ –\${V}\$ Hump Effect Induced by Hot Carriers in Gate Length-Dependent p-Type LTPS TFTs. IEEE Transactions on Electron Devices, 2019, 66, 4764-4767.	3.0	3

SHENG-DONG ZHANG

#	Article	IF	CITATIONS
55	High-performance Al-Zn-O Thin-Film Transistors Sputtering at Different Power. IEEE Transactions on Electron Devices, 2019, 66, 4774-4777.	3.0	8
56	Abnormal Back Channel Leakage Under Large Drain Voltage in Short Channel Organic Thin-Film Transistors. IEEE Electron Device Letters, 2019, 40, 1752-1755.	3.9	0
57	Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition. Applied Surface Science, 2018, 439, 632-637.	6.1	24
58	Combined Effects of Light Illumination and Various Bottom Gate Length on the Instability of Via-Contact-Type Amorphous InGaZnO Thin-Film Transistors. IEEE Transactions on Electron Devices, 2018, 65, 533-536.	3.0	6
59	Room-Temperature-Processed Flexible Amorphous InGaZnO Thin Film Transistor. ACS Applied Materials & Interfaces, 2018, 10, 25850-25857.	8.0	36
60	Performance Improvement of Back-Channel-Etched a-IGZO TFTs by O <inf>2</inf> Plasma Treatment. , 2018, , .		1
61	Scalability and Stability Enhancement in Self-Aligned Top-Gate Indium- Zinc-Oxide TFTs With Al Reacted Source/Drain. IEEE Journal of the Electron Devices Society, 2018, 6, 680-684.	2.1	9
62	Analyzing Electric Field Effect by Applying an Ultra-Short Time Pulse Condition in Hafnium Oxide-Based RRAM. IEEE Electron Device Letters, 2018, 39, 1163-1166.	3.9	17
63	Drain-Induced-Barrier-Lowing-Like Effect Induced by Oxygen-Vacancy in Scaling-Down via-Contact Type Amorphous InGaZnO Thin-Film Transistors. IEEE Journal of the Electron Devices Society, 2018, 6, 685-690.	2.1	21
64	Enhancing the Electrical Uniformity and Reliability of the HfO ₂ -Based RRAM Using High-Permittivity Ta ₂ O ₅ Side Wall. IEEE Journal of the Electron Devices Society, 2018, 6, 627-632.	2.1	17
65	An a-IGZO TFT AMOLED Pixel Circuit to Compensate Threshold Voltage and Mobility Variations. , 2018, , .		3
66	Analytical Drain Current Model for Amorphous InGaZnO Thin-Film Transistors at Different Temperatures Considering Both Deep and Tail Trap States. IEEE Transactions on Electron Devices, 2017, 64, 3654-3660.	3.0	8
67	Pâ€20: Effects of N ₂ O Plasma Treatment Time on the Performance of Selfâ€Aligned Topâ€Gate amorphous oxide Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2017, 48, 1299-1302.	0.3	11
68	Oxygen Interstitial Creation in a-IGZO Thin-Film Transistors Under Positive Gate-Bias Stress. IEEE Electron Device Letters, 2017, 38, 1252-1255.	3.9	41
69	P-37: A High Accuracy Current Comparison Scheme for External Compensation Circuit of AMOLED Displays. Digest of Technical Papers SID International Symposium, 2016, 47, 1261-1264.	0.3	7
70	A Back-Channel-Etched Amorphous InGaZnO Thin-Film Transistor Technology With Al-Doped ZnO as Source/Drain and Pixel Electrodes. IEEE Transactions on Electron Devices, 2016, 63, 2205-2209.	3.0	15
71	Analytical Drain Current Model for Organic Thin-Film Transistors at Different Temperatures Considering Both Deep and Tail Trap States. IEEE Transactions on Electron Devices, 2016, 63, 4423-4431.	3.0	13
72	One Gate Diode-Connected Dual-Gate a-IGZO TFT Driven Pixel Circuit for Active Matrix Organic Light-Emitting Diode Displays. IEEE Transactions on Electron Devices, 2016, 63, 3800-3803.	3.0	34

SHENG-DONG ZHANG

#	Article	IF	CITATIONS
73	Snâ€doped ZnO thinâ€film transistors with AZO, TZO and Al heterojunction source/drain contacts. Electronics Letters, 2016, 52, 302-304.	1.0	4
74	A Compact Bi-Direction Scannable a-Si:H TFT Gate Driver. Journal of Display Technology, 2015, 11, 3-5.	1.2	18
75	Threshold Voltage Shift Effect of a-Si:H TFTs Under Bipolar Pulse Bias. IEEE Transactions on Electron Devices, 2015, 62, 4037-4043.	3.0	9
76	High Performance Ti-Doped ZnO TFTs With AZO/TZO Heterojunction S/D Contacts. Journal of Display Technology, 2015, 11, 412-416.	1.2	12
77	Low-Voltage a-InGaZnO Thin-Film Transistors With Anodized Thin HfO ₂ Gate Dielectric. IEEE Electron Device Letters, 2015, 36, 573-575.	3.9	51
78	Integrated a-Si:H Gate Driver With Low-Level Holding TFTs Biased Under Bipolar Pulses. IEEE Transactions on Electron Devices, 2015, 62, 4044-4050.	3.0	24
79	High-Performance Transparent AZO TFTs Fabricated on Glass Substrate. IEEE Transactions on Electron Devices, 2013, 60, 2432-2435.	3.0	52
80	Comparison of the electrical and optical properties of direct current and radio frequency sputtered amorphous indium gallium zinc oxide films. Thin Solid Films, 2013, 527, 21-25.	1.8	10
81	Self‣tabilized Hydrogenation of Amorphous InGaZnO Schottky Diode with Bilayer Passivation. Advanced Electronic Materials, 0, , 2200280.	5.1	4