Manfred H Wagner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3264919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling elongational viscosity overshoot and brittle fracture of low-density polyethylene melts. Rheologica Acta, 2022, 61, 281-298.	1.1	11
2	Interactive Shear and Extensional Rheology—25Âyears of IRIS Software. Rheologica Acta, 2022, 61, 259-269.	1.1	21
3	Analysis of elongational flow of star polymers. Rheologica Acta, 2022, 61, 415-425.	1.1	3
4	Thermoset powder coating wastes as filler in LDPE – Characterization of mechanical, thermal and morphological properties. Polymer Testing, 2021, 93, 106897.	2.3	5
5	Modeling of nonlinear extensional and shear rheology of lowâ€viscosity polymer melts. Polymer Engineering and Science, 2021, 61, 1077-1086.	1.5	6
6	Elongational viscosity scaling of polymer melts with different chemical constituents. Rheologica Acta, 2021, 60, 163-174.	1.1	8
7	Scaling relations for brittle fracture of entangled polystyrene melts and solutions in elongational flow. Journal of Rheology, 2021, 65, 311-324.	1.3	14
8	Modeling elongational viscosity and brittle fracture of polystyrene solutions. Rheologica Acta, 2021, 60, 385-396.	1.1	9
9	Modelling of Elongational Flow of HDPE Melts by Hierarchical Multi-Mode Molecular Stress Function Model. Polymers, 2021, 13, 3217.	2.0	5
10	Elongational viscosity and brittle fracture of bidisperse blends of a high and several low molar mass polystyrenes. Rheologica Acta, 2021, 60, 803-817.	1.1	11
11	A new perspective on monomeric friction reduction in fast elongational flows of polystyrene melts and solutions. Journal of Rheology, 2021, 65, 1413-1421.	1.3	9
12	Elongational rheology of polystyrene melts and solutions: Concentration dependence of the interchain tube pressure effect. Journal of Rheology, 2020, 64, 95-110.	1.3	19
13	Modeling nonlinear rheology of unentangled polymer melts based on a single integral constitutive equation. Journal of Rheology, 2020, 64, 129-140.	1.3	14
14	Universality of steady shear flow of Rouse melts. Rheologica Acta, 2020, 59, 755-763.	1.1	3
15	A constitutive analysis of nonlinear shear flow. Rheologica Acta, 2020, 59, 487-506.	1.1	17
16	Utilizing hydrolyzed powder recyclates as filler in polystyrene. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 25-32.	0.5	3
17	Review on tube model based constitutive equations for polydisperse linear and long-chain branched polymer melts. Journal of Rheology, 2019, 63, 361-375.	1.3	45
18	Response to "Letter to the Editor: â€~Melt rupture unleashed by few chain scission events in fully stretched strands'―[J. Rheol. 63, 105 (2018)]. Journal of Rheology, 2019, 63, 419-421.	1.3	5

#	Article	IF	CITATIONS
19	Piezo-Plunger Jetting Technology: An Experimental Study on Jetting Characteristics of Filled Epoxy Polymers. Fluids, 2019, 4, 23.	0.8	3
20	Hierarchical multi-mode molecular stress function (HMMSF) model for linear and LCB polymer melts. AIP Conference Proceedings, 2019, , .	0.3	0
21	Analysis of high meltâ€strength poly(ethylene terephthalate) produced by reactive processing by shear and elongational rheology. Polymer Engineering and Science, 2019, 59, 396-410.	1.5	15
22	Review of the hierarchical multiâ€mode molecular stress function model for broadly distributed linear and LCB polymer melts. Polymer Engineering and Science, 2019, 59, 573-583.	1.5	12
23	Polymer Fiber Processing: The Rheotens Test. , 2019, , .		Ο
24	On the origin of brittle fracture of entangled polymer solutions and melts. Journal of Rheology, 2018, 62, 221-233.	1.3	26
25	The peculiar elongational viscosity of concentrated solutions of monodisperse PMMA in oligomeric MMA. Rheologica Acta, 2018, 57, 591-601.	1.1	4
26	Wall slip of polyisobutylenes: effect of molecular characteristics. Rheologica Acta, 2017, 56, 85-94.	1.1	7
27	Rheological and molecular characterization of long-chain branched poly(ethylene terephthalate). Rheologica Acta, 2017, 56, 887-904.	1.1	33
28	The peculiar behavior of functionalized carbon nanotubes in hydrocarbons and polymeric oxidation environments. Journal of Adhesion Science and Technology, 2017, 31, 988-1006.	1.4	5
29	Enhancing the potential of employing thermosetting powder recyclates as filler in LLDPE by structural modifications. Journal of Polymer Engineering, 2017, 37, 287-296.	0.6	10
30	A hierarchical multimode molecular stress function model for linear polymer melts in extensional flows. Journal of Rheology, 2016, 60, 625-636.	1.3	30
31	A hierarchical multi-mode MSF model for long-chain branched polymer melts part III: shear flows. Rheologica Acta, 2016, 55, 633-639.	1.1	16
32	From linear viscoelasticity to elongational flow of polydisperse linear and branched polymer melts: The hierarchical multi-mode molecular stress function model. Polymer, 2016, 104, 204-214.	1.8	21
33	A hierarchical multi-mode MSF model for long-chain branched polymer melts part II: multiaxial extensional flows. Rheologica Acta, 2016, 55, 327-333.	1.1	22
34	An extended interchain tube pressure model for elongational flow of polystyrene melts and concentrated solutions. Journal of Non-Newtonian Fluid Mechanics, 2015, 222, 121-131.	1.0	11
35	From melt to solution: Scaling relations for concentrated polystyrene solutions. Journal of Rheology, 2015, 59, 1113-1130.	1.3	8
36	Uniaxial extensional flow behavior of comb-shaped poly(methyl methacrylate). Rheologica Acta, 2015, 54, 637-645.	1.1	1

#	Article	IF	CITATIONS
37	Rheological characterization of H-shaped poly(methyl methacrylate)s. Rheologica Acta, 2015, 54, 793-804.	1.1	1
38	A hierarchical multi-mode MSF model for long-chain branched polymer melts part I: elongational flow. Rheologica Acta, 2015, 54, 779-791.	1.1	30
39	Recent advances in modeling of polymer melt rheology. Polimery, 2015, 61, 603-611.	0.4	2
40	Drop Test of Plastic Packagings – Correlation with Material Parameters and Change of Packaging Behaviour After Impact of Standard Liquids. Packaging Technology and Science, 2014, 27, 479-493.	1.3	2
41	Scaling relations for elongational flow of polystyrene melts and concentrated solutions of polystyrene in oligomeric styrene. Rheologica Acta, 2014, 53, 765-777.	1.1	34
42	Elongational rheology and cohesive fracture of photo-oxidated LDPE. Journal of Rheology, 2014, 58, 199-222.	1.3	15
43	Study of inkjet printing as additive manufacturing process for gradient polyurethane material. Production Engineering, 2014, 8, 25-32.	1.1	21
44	The Internal Pressure Test in Experiment and Simulation—Influence of the Wall Thickness Variation and the Change of the Packaging Behavior after the Impact of Standard Liquids. Packaging Technology and Science, 2013, 26, 311-326.	1.3	3
45	Effect of Br gassing after Ar plasma treatment of polyolefins. Journal of Adhesion Science and Technology, 2013, 27, 1828-1839.	1.4	19
46	Rheological characterization of cross-linked poly(methyl methacrylate). Rheologica Acta, 2013, 52, 753-765.	1.1	8
47	Increase of long-chain branching by thermo-oxidative treatment of LDPE: Chromatographic, spectroscopic, and rheological evidence. Journal of Rheology, 2013, 57, 105-129.	1.3	22
48	Elongational flow of polymer melts at constant strain rate, constant stress and constant force. , 2013, , .		2
49	Photo-oxidation of LDPE: Effects on elongational viscosity. , 2013, , .		0
50	Rheological characterization of degradation and polycondensation of poly(ethylene terephthalate) melt in air and in nitrogen. AIP Conference Proceedings, 2013, , .	0.3	14
51	Macromol. Chem. Phys. 22/2012. Macromolecular Chemistry and Physics, 2012, 213, 2436-2436.	1.1	0
52	Constant force elongational flow of polymer melts: Experiment and modelling. Journal of Rheology, 2012, 56, 1279.	1.3	23
53	Residue Stabilization in the Fire Retardancy of Wood–Plastic Composites: Combination of Ammonium Polyphosphate, Expandable Graphite, and Red Phosphorus. Macromolecular Chemistry and Physics, 2012, 213, 2370-2377.	1.1	64
54	Role of compatibilizers on the physicomechanical performance of tea dust polypropylene composites. Journal of Applied Polymer Science, 2012, 125, E413.	1.3	7

#	Article	IF	CITATIONS
55	Effect of γ-Radiation on the Mechanical Performance of Hybrid Rice Straw/Seaweed-Polypropylene Composites. Journal of Adhesion Science and Technology, 2011, 25, 1961-1971.	1.4	10
56	Probing Nonlinear Viscoelasticity of Polymer Melts by Medium Amplitude Oscillatory Shear (MAOS). , 2011, , .		0
57	Increase of Long-chain Branching by Thermo-oxidative Treatment of LDPE. , 2011, , .		0
58	Study on the Performance of Hybrid Jute/Betel Nut Fiber Reinforced Polypropylene Composites. Journal of Adhesion Science and Technology, 2011, 25, 615-626.	1.4	34
59	Prediction of steady-state viscous and elastic properties of polyolefin melts in shear and elongation. Rheologica Acta, 2011, 50, 645-653.	1.1	15
60	Enhancement of strain-hardening by thermo-oxidative degradation of low-density polyethylene. Rheologica Acta, 2011, 50, 519-535.	1.1	22
61	Correlation between molecular structure parameters and network properties of silaneâ€grafted and moisture crossâ€linked polyethylenes. Advances in Polymer Technology, 2011, 30, 286-300.	0.8	18
62	Mechanical performance of hybrid rice straw/sea weed polypropylene composites. Journal of Applied Polymer Science, 2011, 120, 1843-1849.	1.3	22
63	Rheological behavior of lubricating systems in polypropylene/seaweed composites. Journal of Applied Polymer Science, 2011, 121, 2143-2148.	1.3	15
64	The effect of dynamic tube dilation on chain stretch in nonlinear polymer melt rheology. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 915-924.	1.0	23
65	The interchain pressure effect in shear rheology. Rheologica Acta, 2010, 49, 459-471.	1.1	29
66	Measurement technique and data analysis of extensional viscosity for polymer melts by Sentmanat extensional rheometer (SER). Rheologica Acta, 2010, 49, 359-370.	1.1	50
67	Seaweed as novel biofiller in polypropylene composites. Journal of Applied Polymer Science, 2010, 118, 997-1005.	1.3	11
68	Extensional viscosity in uniaxial extension and contraction flow—Comparison of experimental methods and application of the molecular stress function model. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 212-218.	1.0	25
69	Effect of layered silicate nanoclay on the properties of silane crosslinked linear low-density polyethylene (LLDPE). EXPRESS Polymer Letters, 2010, 4, 252-262.	1.1	29
70	The damping function in rheology. Rheologica Acta, 2009, 48, 245-284.	1.1	96
71	Modelling elongational and shear rheology of two LDPE melts. Rheologica Acta, 2009, 48, 691-697.	1.1	37

72 Rheological Characterization and Constitutive Modeling of Two LDPE Melts. , 2009, , .

1

#	Article	IF	CITATIONS
73	Recent Advances in Constitutive Modeling of Polymer Melts. , 2009, , .		14
74	Study on phase separation of PET/PEN blends by dynamic rheology. Journal of Applied Polymer Science, 2008, 110, 177-182.	1.3	8
75	Verification of branch point withdrawal in elongational flow of pom-pom polystyrene melt. Journal of Rheology, 2008, 52, 1049-1068.	1.3	51
76	A constitutive analysis of transient and steady-state elongational viscosities of bidisperse polystyrene blends. Journal of Rheology, 2008, 52, 67-86.	1.3	50
77	The MSF model: relation of nonlinear parameters to molecular structure of long-chain branched polymer melts. Rheologica Acta, 2007, 46, 583-593.	1.1	42
78	Experiment as a Boundary-Value Problem. , 2007, , 3-31.		0
79	Modeling non-Gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. Journal of Rheology, 2006, 50, 327-340.	1.3	52
80	The Rheology of Linear and Long-chain Branched Polymer Melts. Macromolecular Symposia, 2006, 236, 219-227.	0.4	7
81	A modification of the convective constraint release mechanism in the molecular stress function model giving enhanced vortex growth. Journal of Non-Newtonian Fluid Mechanics, 2006, 135, 68-81.	1.0	16
82	Modeling elongational viscosity of blends of linear and long-chain branched polypropylenes. Rheologica Acta, 2006, 46, 211-221.	1.1	23
83	Impact of processing history on rheological properties for branched polypropylene. Polymer, 2006, 47, 3629-3635.	1.8	60
84	Modeling strain hardening of polydisperse polystyrene melts by molecular stress function theory. Rheologica Acta, 2005, 44, 235-243.	1.1	35
85	Exponential shear flow of branched polyethylenes in rotational parallel-plate geometry. Rheologica Acta, 2005, 45, 164-173.	1.1	14
86	Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts. Journal of Rheology, 2005, 49, 1317-1327.	1.3	118
87	Quantitative analysis of melt elongational behavior of LLDPE/LDPE blends. Rheologica Acta, 2004, 44, 198-218.	1.1	84
88	Development of a polymer stent with shape memory effect as a drug delivery system. Journal of Materials Science: Materials in Medicine, 2003, 14, 109-112.	1.7	242
89	Surface treatment mechanism of nano-SiO2 and the properties of PP/nano-SiO2 composite materials. Colloid and Polymer Science, 2003, 281, 550-555.	1.0	26
90	The Matching of Experimental Polymer Processing Flows to Viscoelastic Numerical Simulation. International Polymer Processing, 2002, 17, 3-10.	0.3	18

#	Article	IF	CITATIONS
91	Determination of elongational viscosity of polymer melts by RME and Rheotens experiments. Rheologica Acta, 2002, 41, 316-325.	1.1	42
92	Golden Jubilee Meeting of the German Society of Rheology (DRG), Berlin, Germany. Rheologica Acta, 2002, 41, 290-291.	1.1	0
93	LDPE melt rheology and the pom–pom model. Journal of Non-Newtonian Fluid Mechanics, 2000, 92, 245-259.	1.0	35
94	The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows. Rheologica Acta, 2000, 39, 97-109.	1.1	157
95	Assessment of LDPE Melt Strength by Use of Rheotens Mastercurves. International Polymer Processing, 2000, 15, 268-272.	0.3	7
96	Effect of Wall Slip on Rheotens Mastercurves for Linear PE Melts. International Polymer Processing, 1999, 14, 336-341.	0.3	3
97	Dynamics of polymer melts in reversing shear flows1Dedicated to the memory of Professor Gianni Astarita.1. Journal of Non-Newtonian Fluid Mechanics, 1998, 76, 183-197.	1.0	23
98	Nonlinear viscoelastic characterization of a linear polyethylene (HDPE) melt in rotational and irrotational flows. Journal of Non-Newtonian Fluid Mechanics, 1998, 79, 283-296.	1.0	23
99	Damping functions and nonlinear viscoelasticity—a review. Journal of Non-Newtonian Fluid Mechanics, 1997, 68, 169-171.	1.0	12
100	The role of the orientation tensor in the rheology of flexible polymers. Macromolecular Theory and Simulations, 1997, 6, 703-711.	0.6	4
101	Rheotens-mastercurves and drawability of polymer melts. Polymer Engineering and Science, 1996, 36, 925-935.	1.5	61
102	Professor Dr. Joachim Meissner on the occasion of his retirement. Rheologica Acta, 1996, 35, 101-102.	1.1	2
103	Rheotens-mastercurves and elongational viscosity of polymer melts. Rheologica Acta, 1996, 35, 117-126.	1.1	42
104	Untersuchungen zur irreversibilitävon Netzwerkentschlaufungen beim Fließen von Polymerschmelzen. Macromolecular Chemistry and Physics, 1995, 196, 2989-3004.	1.1	5
105	Assessment of nonlinear strain measures for extensional and shearing flows of polymer melts. Rheologica Acta, 1994, 33, 506-516.	1.1	56
106	Analysis of Small-Angle Neutron Scattering Data on Poly(dimethylsiloxane) Network Unfolding. Macromolecules, 1994, 27, 5223-5226.	2.2	12
107	The nonlinear strain measure of polymer melts and rubbers: A unifying approach. Makromolekulare Chemie Macromolecular Symposia, 1993, 68, 95-108.	0.6	3
108	The slipâ€link model: A constitutive equation for general biaxial extension of polymer melts. Makromolekulare Chemie Macromolecular Symposia, 1992, 56, 13-24.	0.6	4

#	Article	IF	CITATIONS
109	Constitutive equations from Gaussian slip-link network theories in polymer melt rheology. Rheologica Acta, 1992, 31, 22-31.	1.1	27
110	The nonlinear strain measure of polyisobutylene melt in general biaxial flow and its comparison to the Doi-Edwards model. Rheologica Acta, 1990, 29, 594-603.	1.1	42
111	Einige offene Fragen in der Rheologie der Polymerschmelzen. Angewandte Makromolekulare Chemie, 1990, 179, 217-229.	0.3	1
112	Constant force elongational flow of a low-density polyethylene melt—experiment and theory. Journal of Non-Newtonian Fluid Mechanics, 1982, 11, 239-256.	1.0	28
113	The spike-strain test for polymeric liquids and its relevance for irreversible destruction of network connectivity by deformation. Rheologica Acta, 1979, 18, 463-468.	1.1	26
114	Tensile stress overshoot in uniaxial extension of a LDPE melt. Rheologica Acta, 1979, 18, 427-428.	1.1	86
115	Model analysis of nonlinear viscoelastic behaviour by use of a single integral constitutive equation: Stresses and birefringence of a polystyrene melt in intermittent shear flows. Rheologica Acta, 1979, 18, 615-622.	1.1	29
116	Elongational behaviour of polymer melts in constant elongation-rate, constant tensile stress, and constant tensile force experiments. Rheologica Acta, 1979, 18, 681-692.	1.1	59
117	A constitutive analysis of uniaxial elongational flow data of low-density polyethylene melt. Journal of Non-Newtonian Fluid Mechanics, 1978, 4, 39-55.	1.0	189
118	Nonlinear shear creep and constrained elastic recovery of a LDPE melt. Rheologica Acta, 1978, 17, 138-148.	1.1	98
119	Prediction of primary normal stress difference from shear viscosity data using a single integral constitutive equation. Rheologica Acta, 1977, 16, 43-50.	1.1	99
120	Analysis of stress-growth data for simple extension of a low-density branched polyethylene melt. Rheologica Acta, 1976, 15, 133-135.	1.1	65
121	Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt. Rheologica Acta, 1976, 15, 136-142.	1.1	387
122	Das Folienblasverfahren als rheologisch-thermodynamischer Proze�. Rheologica Acta, 1976, 15, 40-51.	1.1	36
123	Developing flow in circular conduits: transition from plug flow to tube flow. Journal of Fluid Mechanics, 1975, 72, 257.	1.4	18
124	Endor study of atomic hydrogen in KI-crystals. Solid State Communications, 1974, 14, 1101-1104.	0.9	11