Zhaorong Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3264887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (<i>Triticum aestivum</i> L.). Plant Biotechnology Journal, 2018, 16, 714-726.	4.1	161
2	Global QTL Analysis Identifies Genomic Regions on Chromosomes 4A and 4B Harboring Stable Loci for Yield-Related Traits Across Different Environments in Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2018, 9, 529.	1.7	132
3	Histone acetyltransferase <scp>GCN</scp> 5 is essential for heat stressâ€responsive gene activation and thermotolerance in Arabidopsis. Plant Journal, 2015, 84, 1178-1191.	2.8	126
4	A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2018, 131, 539-553.	1.8	121
5	Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nature Communications, 2020, 11, 5085.	5.8	104
6	Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. Crop Journal, 2018, 6, 32-41.	2.3	103
7	Histone acetyltransferase <scp>GCN</scp> 5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. Plant Journal, 2019, 97, 587-602.	2.8	99
8	The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant Cell, 2021, 33, 603-622.	3.1	88
9	A Single Amino Acid Substitution in STKc_GSK3 Kinase Conferring Semispherical Grains and Its Implications for the Origin of <i>Triticumsphaerococcum</i> . Plant Cell, 2020, 32, 923-934.	3.1	78
10	Characterization of wheat MYB genes responsive to high temperatures. BMC Plant Biology, 2017, 17, 208.	1.6	75
11	Wheat miR9678 Affects Seed Germination by Generating Phased siRNAs and Modulating Abscisic Acid/Gibberellin Signaling. Plant Cell, 2018, 30, 796-814.	3.1	75
12	Epigenetic modification contributes to the expression divergence of three <i><scp>T</scp>a<scp>EXPA</scp>1</i> homoeologs in hexaploid wheat (<i><scp>T</scp>riticum) Tj ETQq0 (</i>	0 0 ജേ₿T /C)ve rto ck 10 Tf
13	Altered expression of <i>Ta<scp>RSL</scp>4</i> gene by genome interplay shapes root hair length in allopolyploid wheat. New Phytologist, 2016, 209, 721-732.	3.5	71
14	Comparative Proteomic Analysis of Embryos between a Maize Hybrid and Its Parental Lines during Early Stages of Seed Germination. PLoS ONE, 2013, 8, e65867.	1.1	71
15	Wheat <i>TaSPL8</i> Modulates Leaf Angle Through Auxin and Brassinosteroid Signaling. Plant Physiology, 2019, 181, 179-194.	2.3	69
16	Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat. Plant Physiology, 2021, 186, 1951-1969.	2.3	69
17	The E3 Ligase TaSAP5 Alters Drought Stress Responses by Promoting the Degradation of DRIP Proteins. Plant Physiology, 2017, 175, 1878-1892.	2.3	64
18	The Wheat NAC Transcription Factor TaNAC2L Is Regulated at the Transcriptional and Post-Translational Levels and Promotes Heat Stress Tolerance in Transgenic Arabidopsis. PLoS ONE, 2015, 10, e0135667.	1.1	57

ZHAORONG HU

#	Article	IF	CITATIONS
19	GENERAL CONTROL NONREPRESSED PROTEIN5-Mediated Histone Acetylation of <i>FERRIC REDUCTASE DEFECTIVE3</i> Contributes to Iron Homeostasis in Arabidopsis. Plant Physiology, 2015, 168, 1309-1320.	2.3	56
20	Ta <scp>WRKY</scp> 51 promotes lateral root formation through negative regulation of ethylene biosynthesis in wheat (<i>Triticum aestivum</i> L.). Plant Journal, 2018, 96, 372-388.	2.8	55
21	Mapping QTLs associated with root traits using two different populations in wheat (Triticum) Tj ETQq1 1 0.784	4314 rgBT / 0.6	Overlock 10 53
22	Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133, 1825-1838.	1.8	53
23	Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2018, 131, 2621-2637.	1.8	51
24	Genome-Wide Mapping of Targets of Maize Histone Deacetylase HDA101 Reveals Its Function and Regulatory Mechanism during Seed Development. Plant Cell, 2016, 28, 629-645.	3.1	49
25	The wheat transcription factor Ta <scp>GAM</scp> yb recruits histone acetyltransferase and activates the expression of a highâ€molecularâ€weight glutenin subunit gene. Plant Journal, 2015, 84, 347-359.	2.8	46
26	Ectopic expression of TaOEP16-2-5B , a wheat plastid outer envelope protein gene, enhances heat and drought stress tolerance in transgenic Arabidopsis plants. Plant Science, 2017, 258, 1-11.	1.7	42
27	Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133, 149-162.	1.8	42
28	<i>FRIZZY PANICLE</i> defines a regulatory hub for simultaneously controlling spikelet formation and awn elongation in bread wheat. New Phytologist, 2021, 231, 814-833.	3.5	41
29	Isolation and characterization of heat-responsive gene TaGASR1 from wheat (Triticum aestivum L.). Journal of Plant Biology, 2017, 60, 57-65.	0.9	39
30	GCN5 contributes to stem cuticular wax biosynthesis by histone acetylation of CER3 in Arabidopsis. Journal of Experimental Botany, 2018, 69, 2911-2922.	2.4	36
31	Heat shock transcription factor A1b regulates heat tolerance in wheat and Arabidopsis through <scp>OPR</scp> 3 and jasmonate signalling pathway. Plant Biotechnology Journal, 2020, 18, 1109-1111.	4.1	36
32	Genome-wide association study identifies QTL for thousand grain weight in winter wheat under normal- and late-sown stressed environments. Theoretical and Applied Genetics, 2021, 134, 143-157.	1.8	36
33	Three genomes differentially contribute to the seedling lateral root number in allohexaploid wheat: evidence from phenotype evolution and gene expression. Plant Journal, 2018, 95, 976-987.	2.8	35
34	A single nucleotide deletion in the third exon of <i>FTâ€D1</i> increases the spikelet number and delays heading date in wheat (<i>Triticum aestivum</i> L.). Plant Biotechnology Journal, 2022, 20, 920-933.	4.1	35
35	Changes in Alternative Splicing in Response to Domestication and Polyploidization in Wheat. Plant Physiology, 2020, 184, 1955-1968.	2.3	34
36	Unconventional splicing of wheat TabZIP60 confers heat tolerance in transgenic Arabidopsis. Plant Science, 2018, 274, 252-260.	1.7	33

ZHAORONG HU

#	Article	IF	CITATIONS
37	Use of near-isogenic lines to precisely map and validate a major QTL for grain weight on chromosome 4AL in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2019, 132, 2367-2379.	1.8	32
38	Ectopic expression of VRT-A2 underlies the origin of Triticum polonicum and Triticum petropavlovskyi with long outer glumes and grains. Molecular Plant, 2021, 14, 1472-1488.	3.9	32
39	Btr1-A Induces Grain Shattering and Affects Spike Morphology and Yield-Related Traits in Wheat. Plant and Cell Physiology, 2019, 60, 1342-1353.	1.5	31
40	Stress granuleâ€associated TaMBF1c confers thermotolerance through regulating specific mRNA translation in wheat (<i>Triticum aestivum</i>). New Phytologist, 2022, 233, 1719-1731.	3.5	31
41	Histone acetyltransferase general control nonâ€repressed protein 5 (<scp>GCN</scp> 5) affects the fatty acid composition of <i>Arabidopsis thaliana</i> seeds by acetylating <i>fatty acid desaturase3</i> (<i><scp>FAD</scp>3</i>). Plant Journal, 2016, 88, 794-808.	2.8	30
42	Histone acetyltransferase GCN5-mediated regulation of long non-coding RNA At4 contributes to phosphate starvation response in Arabidopsis. Journal of Experimental Botany, 2019, 70, 6337-6348.	2.4	30
43	Expression divergence of TaMBD2 homoeologous genes encoding methyl CpG-binding domain proteins in wheat (Triticum aestivum L.). Gene, 2011, 471, 13-18.	1.0	26
44	Genomic Imprinting Was Evolutionarily Conserved during Wheat Polyploidization. Plant Cell, 2018, 30, 37-47.	3.1	26
45	Dissection and validation of a QTL cluster linked to Rht-B1 locus controlling grain weight in common wheat (Triticum aestivum L.) using near-isogenic lines. Theoretical and Applied Genetics, 2020, 133, 2639-2653.	1.8	26
46	Pleiotropic function of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene TaSPL14 in wheat plant architecture. Planta, 2021, 253, 44.	1.6	26
47	Overexpression of a wheat stearoyl-ACP desaturase (SACPD) gene TaSSI2 in Arabidopsis ssi2 mutant compromise its resistance to powdery mildew. Gene, 2013, 524, 220-227.	1.0	25
48	High Molecular Weight Glutenin Subunits 1Bx7 and 1By9 Encoded by <i>Glu-B1</i> Locus Affect Wheat Dough Properties and Sponge Cake Quality. Journal of Agricultural and Food Chemistry, 2019, 67, 11796-11804.	2.4	23
49	Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2019, 132, 1815-1831.	1.8	22
50	Molecular and Functional Characterization of Wheat ARGOS Genes Influencing Plant Growth and Stress Tolerance. Frontiers in Plant Science, 2017, 8, 170.	1.7	20
51	Overexpression of Three TaEXPA1 Homoeologous Genes with Distinct Expression Divergence in Hexaploid Wheat Exhibit Functional Retention in Arabidopsis. PLoS ONE, 2013, 8, e63667.	1.1	16
52	Histone acetyltransferase <scp>TaHAG1</scp> interacts with <scp>TaPLATZ5</scp> to activate <i>TaPAD4</i> expression and positively contributes to powdery mildew resistance in wheat. New Phytologist, 2022, 236, 590-607.	3.5	16
53	Temporal small RNA transcriptome profiling unraveled partitioned miRNA expression in developing maize endosperms between reciprocal crosses. Frontiers in Plant Science, 2015, 6, 744.	1.7	14
54	Altered expression of the TaRSL2 gene contributed to variation in root hair length during allopolyploid wheat evolution. Planta, 2017, 246, 1019-1028.	1.6	14

ZHAORONG HU

#	Article	IF	CITATIONS
55	Identification of HSP90C as a substrate of E3 ligase TaSAP5 through ubiquitylome profiling. Plant Science, 2019, 287, 110170.	1.7	14
56	Fine Mapping of the Wheat Leaf Rust Resistance Gene LrLC10 (Lr13) and Validation of Its Co-segregation Markers. Frontiers in Plant Science, 2020, 11, 470.	1.7	14
57	ggComp enables dissection of germplasm resources and construction of a multiscale germplasm network in wheat. Plant Physiology, 2022, 188, 1950-1965.	2.3	13
58	Ectopic Expression of a Maize Hybrid Down-Regulated Gene ZmARF25 Decreases Organ Size by Affecting Cellular Proliferation in Arabidopsis. PLoS ONE, 2014, 9, e94830.	1.1	12
59	Histone acetyltransferase <scp>TaHAG1</scp> interacts with <scp>TaNACL</scp> to promote heat stress tolerance in wheat. Plant Biotechnology Journal, 2022, 20, 1645-1647.	4.1	10
60	Identification of AflR Binding Sites in the Genome of Aspergillus flavus by ChIP-Seq. Journal of Fungi (Basel, Switzerland), 2020, 6, 52.	1.5	9
61	Fine mapping of a powdery mildew resistance gene MIIW39 derived from wild emmer wheat (Triticum) Tj ETQq1	1 0.78431 1.8	4 رgBT /Ove
62	Fine Mapping of the Leaf Rust Resistance Gene Lr65 in Spelt Wheat â€~Altgold'. Frontiers in Plant Science, 2021, 12, 666921.	1.7	7
63	The decreased expression of GW2 homologous genes contributed to the increased grain width and thousand‑grain weight in wheat-Dasypyrum villosum 6VS·6DL translocation lines. Theoretical and Applied Genetics, 2021, 134, 3873-3894.	1.8	7
64	Genome-wide linkage mapping of QTL for root hair length in a Chinese common wheat population. Crop Journal, 2020, 8, 1049-1056.	2.3	6
65	The semidominant mutation w5 impairs epicuticular wax deposition in common wheat (Triticum) Tj ETQq1 1 0.7	84314 rgB 1.8	BT (Overlock
66	Phenotypic characterization of the glossy1 mutant and fine mapping of GLOSSY1 in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2021, 134, 835-847.	1.8	6
67	Unprocessed wheat γâ€gliadin reduces gluten accumulation associated with the endoplasmic reticulum stress and elevated cell death. New Phytologist, 2022, 236, 146-164.	3.5	5
68	Characterization of a new hexaploid triticale 6D(6A) substitution line with increased grain weight and decreased spikelet number. Crop Journal, 2019, 7, 598-607.	2.3	4
69	The genetic and molecular basis for improving heat stress tolerance in wheat. ABIOTECH, 2022, 3, 25-39.	1.8	3
70	Single-cell-type transcriptomic analysis reveals distinct gene expression profiles in wheat guard cells in response to abscisic acid. Functional Plant Biology, 2021, 48, 1087-1099.	1.1	2