
Olivier Sandre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3264717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic Ordering in Ultrasmall Potassium Ferrite Nanoparticles Grown on Graphene Nanoflakes. ACS Applied Materials & Interfaces, 2022, 14, 3130-3142.	8.0	4
2	Tear of lipid membranes by nanoparticles. Soft Matter, 2022, 18, 3318-3322.	2.7	3
3	Challenges and recommendations for magnetic hyperthermia characterization measurements. International Journal of Hyperthermia, 2021, 38, 447-460.	2.5	33
4	Mn ²⁺ Complexes with Pyclen-Based Derivatives as Contrast Agents for Magnetic Resonance Imaging: Synthesis and Relaxometry Characterization. Inorganic Chemistry, 2021, 60, 3604-3619.	4.0	19
5	Aqueous ROPISA of α-amino acid <i>N</i> -carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy. Polymer Chemistry, 2021, 12, 6242-6251.	3.9	27
6	<i>In vitro</i> exploration of the synergistic effect of alternating magnetic field mediated thermo–chemotherapy with doxorubicin loaded dual pH- and thermo-responsive magnetic nanocomposite carriers. Journal of Materials Chemistry B, 2020, 8, 10527-10539.	5.8	11
7	Tuning Size and Morphology of mPEG-b-p(HPMA-Bz) Copolymer Self-Assemblies Using Microfluidics. Polymers, 2020, 12, 2572.	4.5	15
8	Polyol-Made Luminescent and Superparamagnetic β-NaY0.8Eu0.2F4@γ-Fe2O3 Core-Satellites Nanoparticles for Dual Magnetic Resonance and Optical Imaging. Nanomaterials, 2020, 10, 393.	4.1	7
9	Effects of Chain Length of Chitosan Oligosaccharides on Solution Properties and Complexation with siRNA. Polymers, 2019, 11, 1236.	4.5	15
10	Auto-degradable and biocompatible superparamagnetic iron oxide nanoparticles/polypeptides colloidal polyion complexes with high density of magnetic material. Materials Science and Engineering C, 2019, 104, 109920.	7.3	8
11	Embedding of superparamagnetic iron oxide nanoparticles into membranes of well-defined poly(ethylene oxide)-block-poly(ε-caprolactone) nanoscale magnetovesicles as ultrasensitive MRI probes of membrane bio-degradation. Journal of Materials Chemistry B, 2019, 7, 4692-4705.	5.8	15
12	Evaluation of polyolâ€made Gd ³⁺ â€substituted Co _{0.6} Zn _{0.4} Fe ₂ O ₄ nanoparticles as high magnetization MRI negative contrast agents. Journal of Interdisciplinary Nanomedicine, 2019, 4, 4-23.	3.6	4
13	Giant hybrid polymer/lipid vesicles. , 2019, , 551-568.		1
14	Thermogravitational Cycles: Theoretical Framework and Example of an Electric Thermogravitational Generator Based on Balloon Inflation/Deflation. Inventions, 2018, 3, 79.	2.5	0
15	Effect of Formulation and Processing Parameters on the Size of mPEG- <i>b</i> -p(HPMA-Bz) Polymeric Micelles. Langmuir, 2018, 34, 15495-15506.	3.5	45
16	Colloidal Stability of Aqueous Suspensions of Polymer-Coated Iron Oxide Nanorods: Implications for Biomedical Applications. ACS Applied Nano Materials, 2018, 1, 6760-6772.	5.0	18
17	Magnetic Polyion Complex Micelles for Cell Toxicity Induced by Radiofrequency Magnetic Field Hyperthermia. Nanomaterials, 2018, 8, 1014.	4.1	11
18	Kinetics of Aggregation and Magnetic Separation of Multicore Iron Oxide Nanoparticles: Effect of the Grafted Layer Thickness. Nanomaterials, 2018, 8, 623.	4.1	28

#	Article	IF	CITATIONS
19	Innenrücktitelbild: Polymersome Popping by Lightâ€Induced Osmotic Shock under Temporal, Spatial, and Spectral Control (Angew. Chem. 6/2017). Angewandte Chemie, 2017, 129, 1699-1699.	2.0	0
20	Mixing Block Copolymers with Phospholipids at the Nanoscale: From Hybrid Polymer/Lipid Wormlike Micelles to Vesicles Presenting Lipid Nanodomains. Langmuir, 2017, 33, 1705-1715.	3.5	75
21	Drug releasing nanoplatforms activated by alternating magnetic fields. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1617-1641.	2.4	84
22	Extensive characterization of magnetic microrods observed using optical microscopy. Soft Matter, 2017, 13, 3841-3846.	2.7	0
23	Modulation of phase separation at the micron scale and nanoscale in giant polymer/lipid hybrid unilamellar vesicles (GHUVs). Soft Matter, 2017, 13, 627-637.	2.7	57
24	Polymersome Popping by Lightâ€Induced Osmotic Shock under Temporal, Spatial, and Spectral Control. Angewandte Chemie, 2017, 129, 1588-1592.	2.0	18
25	Polymersome Popping by Lightâ€Induced Osmotic Shock under Temporal, Spatial, and Spectral Control. Angewandte Chemie - International Edition, 2017, 56, 1566-1570.	13.8	71
26	Thermo-responsive self-immolative nanoassemblies: direct and indirect triggering. Chemical Communications, 2017, 53, 12068-12071.	4.1	40
27	Influence of a dispersion of magnetic and nonmagnetic nanoparticles on the magnetic Fredericksz transition of the liquid crystal 5CB. Physical Review E, 2017, 96, 012706.	2.1	33
28	Thermomagnetically Responsive γâ€Fe ₂ O ₃ @Wax@SiO ₂ Subâ€Micrometer Capsules. Particle and Particle Systems Characterization, 2017, 34, 1700063.	2.3	4
29	Monocore <i>vs.</i> multicore magnetic iron oxide nanoparticles: uptake by glioblastoma cells and efficiency for magnetic hyperthermia. Molecular Systems Design and Engineering, 2017, 2, 629-639.	3.4	54
30	Controllable Microfluidic Production of Drug-Loaded PLGA Nanoparticles Using Partially Water-Miscible Mixed Solvent Microdroplets as a Precursor. Scientific Reports, 2017, 7, 4794.	3.3	74
31	Tuning Sizes, Morphologies, and Magnetic Properties of Monocore Versus Multicore Iron Oxide Nanoparticles through the Controlled Addition of Water in the Polyol Synthesis. Inorganic Chemistry, 2017, 56, 8232-8243.	4.0	83
32	In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia. Genes, 2017, 8, 61.	2.4	15
33	Biocompatible Polyion Complex Micelles Synthesized from Arborescent Polymers. Langmuir, 2016, 32, 13482-13492.	3.5	21
34	Harmonic phases of the nanoparticle magnetization: An intrinsic temperature probe. Applied Physics Letters, 2015, 107, .	3.3	30
35	Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews, 2015, 2, 041302.	11.3	615
36	Thermosensitive polymer-grafted iron oxide nanoparticles studied by <i>in situ</i> dynamic light backscattering under magnetic hyperthermia. Journal Physics D: Applied Physics, 2015, 48, 494001.	2.8	23

#	Article	IF	CITATIONS
37	Phase Separation and Nanodomain Formation in Hybrid Polymer/Lipid Vesicles. ACS Macro Letters, 2015, 4, 182-186.	4.8	69
38	Nano-thermometers with thermo-sensitive polymer grafted USPIOs behaving as positive contrast agents in low-field MRI. Nanoscale, 2015, 7, 3754-3767.	5.6	47
39	Structural Evolution of a Stimulus-Responsive Diblock Polypeptide Micelle by Temperature Tunable Compaction of its Core. Macromolecules, 2015, 48, 6617-6627.	4.8	33
40	Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry). Nanotechnology, 2015, 26, 015704.	2.6	80
41	A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 2014, 368, 432-437.	2.3	81
42	Design of a fluorinated magneto-responsive material with tuneable ultrasound scattering properties. Journal of Materials Chemistry B, 2014, 2, 1285.	5.8	18
43	Templated Synthesis of Magnetic Nanoparticles through the Self-Assembly of Polymers and Surfactants. Nanomaterials, 2014, 4, 628-685.	4.1	22
44	Polymersome Shape Transformation at the Nanoscale. ACS Nano, 2013, 7, 9298-9311.	14.6	96
45	Tuning Mie Scattering Resonances in Soft Materials with Magnetic Fields. Physical Review Letters, 2013, 111, 264301.	7.8	16
46	Antibodyâ€Functionalized Magnetic Polymersomes: In vivo Targeting and Imaging of Bone Metastases using High Resolution MRI. Advanced Healthcare Materials, 2013, 2, 1420-1424.	7.6	84
47	Self-assembled core–shell micelles from peptide-b-polymer molecular chimeras towards structure–activity relationships. Faraday Discussions, 2013, 166, 83.	3.2	11
48	Droplet Microfluidics to Prepare Magnetic Polymer Vesicles and to Confine the Heat in Magnetic Hyperthermia. IEEE Transactions on Magnetics, 2013, 49, 182-190.	2.1	22
49	Hybrid polymer/lipid vesicles: state of the art and future perspectives. Materials Today, 2013, 16, 397-402.	14.2	187
50	Magnetic responsive polymer composite materials. Chemical Society Reviews, 2013, 42, 7099.	38.1	499
51	Magnetic field triggered drug release from polymersomes for cancer therapeutics. Journal of Controlled Release, 2013, 169, 165-170.	9.9	267
52	Hybrid iron oxide-copolymer micelles and vesicles as contrast agents for MRI: impact of the nanostructure on the relaxometric properties. Journal of Materials Chemistry B, 2013, 1, 5317.	5.8	56
53	Polymersomes in "Gelly―Polymersomes: Toward Structural Cell Mimicry. Langmuir, 2012, 28, 2035-2043.	3.5	68
54	Hybrid polymer/lipid vesicles: fine control of the lipid and polymer distribution in the binary membrane. Soft Matter, 2012, 8, 2867.	2.7	115

#	Article	IF	CITATIONS
55	A Universal Scaling Law to Predict the Efficiency of Magnetic Nanoparticles as MRI T2â€Contrast Agents. Advanced Healthcare Materials, 2012, 1, 502-512.	7.6	174
56	Depletion induced vesicle-to-micelle transition from self-assembled rod–coil diblock copolymers with spherical magnetic nanoparticles. Soft Matter, 2011, 7, 9744.	2.7	22
57	Doxorubicin Loaded Magnetic Polymersomes: Theranostic Nanocarriers for MR Imaging and Magneto-Chemotherapy. ACS Nano, 2011, 5, 1122-1140.	14.6	441
58	Recent trends in the tuning of polymersomes' membrane properties. European Physical Journal E, 2011, 34, 14.	1.6	195
59	Local structure of polymeric ferrogels. Journal of Magnetism and Magnetic Materials, 2011, 323, 1211-1215.	2.3	21
60	Dynamics of paramagnetic nanostructured rods under rotating field. Journal of Magnetism and Magnetic Materials, 2011, 323, 1309-1313.	2.3	44
61	Microfluidics in Inorganic Chemistry. Angewandte Chemie - International Edition, 2010, 49, 6268-6286.	13.8	212
62	Incorporation of magnetic nanoparticles into lamellar polystyrene-b-poly(n-butyl methacrylate) diblock copolymer films: Influence of the chain end-groups on nanostructuration. Polymer, 2010, 51, 4673-4685.	3.8	13
63	Orientational behavior of an assembly of superparmagnetic rods. Physics Procedia, 2010, 9, 15-19.	1.2	1
64	Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state. Nanotechnology, 2010, 21, 145103.	2.6	75
65	Sensitive High Frequency AC Susceptometry in Magnetic Nanoparticle Applications. AlP Conference Proceedings, 2010, , .	0.4	39
66	Homogeneous Dispersion of Magnetic Nanoparticles Aggregates in a PS Nanocomposite: Highly Reproducible Hierarchical Structure Tuned by the Nanoparticles' Size. Macromolecules, 2010, 43, 5785-5796.	4.8	39
67	Neutron Reflectivity on Polymer Multilayers Doped with Magnetic Nanoparticles. Solid State Phenomena, 2009, 152-153, 194-197.	0.3	1
68	Synthesis of Goethite by Separation of the Nucleation and Growth Processes of Ferrihydrite Nanoparticles Using Microfluidics. Angewandte Chemie - International Edition, 2009, 48, 2342-2345.	13.8	53
69	Electrostatic Coâ€assembly of Magnetic Nanoparticles and Fluorescent Nanospheres: A Versatile Approach Towards Bimodal Nanorods. Small, 2009, 5, 2533-2536.	10.0	25
70	Stabilization and controlled association of superparamagnetic nanoparticles using block copolymers. Journal of Magnetism and Magnetic Materials, 2009, 321, 667-670.	2.3	12
71	Fluorescence Confocal Laser Scanning Microscopy for pH Mapping in a Coaxial Flow Microreactor: Application in the Synthesis of Superparamagnetic Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 18097-18105.	3.1	35
72	Static and dynamic structural probing of swollen polyacrylamide ferrogels. Soft Matter, 2009, , .	2.7	12

#	Article	IF	CITATIONS
73	Electrostatic Coâ€Assembly of Iron Oxide Nanoparticles and Polymers: Towards the Generation of Highly Persistent Superparamagnetic Nanorods. Advanced Materials, 2008, 20, 3877-3881.	21.0	97
74	Magneto-orientational properties of ionically stabilized aqueous dispersions of Ni(OH)2 nanoplatelets. European Physical Journal E, 2008, 26, 355-360.	1.6	3
75	Synthesis of iron oxide nanoparticles in a microfluidic device: preliminary results in a coaxial flow millichannel. Chemical Communications, 2008, , 1783.	4.1	124
76	Multicolor Emission of Small Molecule-Based Amorphous Thin Films and Nanoparticles with a Single Excitation Wavelength. Chemistry of Materials, 2008, 20, 6597-6599.	6.7	104
77	Reorientation kinetics of superparamagnetic nanostructured rods. Journal of Physics Condensed Matter, 2008, 20, 494216.	1.8	9
78	Universal scattering behavior of coassembled nanoparticle-polymer clusters. Physical Review E, 2008, 78, 040401.	2.1	29
79	Oblate-Prolate Transition of Ellipsoidal Giant Magnetoliposomes: Experiments Showing an Anisotropic Spontaneous Curvature. Perspectives in Supramolecular Chemistry, 2007, , 169-180.	0.1	1
80	Size Distribution of Superparamagnetic Particles Determined by Magnetic Sedimentation. Langmuir, 2007, 23, 2993-2999.	3.5	72
81	Smart hybrid magnetic self-assembled micelles and hollow capsules. Progress in Solid State Chemistry, 2006, 34, 171-179.	7.2	44
82	Stable oxide nanoparticle clusters obtained by complexation. Journal of Colloid and Interface Science, 2006, 303, 315-318.	9.4	59
83	Controlled Clustering of Superparamagnetic Nanoparticles Using Block Copolymers: Design of New Contrast Agents for Magnetic Resonance Imaging. Journal of the American Chemical Society, 2006, 128, 1755-1761.	13.7	356
84	Self-assemblies of magnetic nanoparticles and di-block copolymers: Magnetic micelles and vesicles. Journal of Magnetism and Magnetic Materials, 2006, 300, 71-74.	2.3	31
85	Magnetic Nanocomposite Micelles and Vesicles. Advanced Materials, 2005, 17, 712-718.	21.0	170
86	Phase Behavior of Nanoparticles in a Thermotropic Liquid Crystal. Journal of Physical Chemistry B, 2005, 109, 14292-14299.	2.6	66
87	Adsorption of Magnetic Nanoparticles onto Polyacrylamide Chains in Dilute Polymer Solutions and Ferrogel Networks. AIP Conference Proceedings, 2004, , .	0.4	1
88	Preparation and swelling of hydrophilic magnetic microgels. Polymer, 2004, 45, 2475-2481.	3.8	74
89	Transient pores in vesicles. Polymer International, 2003, 52, 486-493.	3.1	50
90	Designing magnetic composite materials using aqueous magnetic fluids. Journal of Physics Condensed Matter, 2003, 15, S1379-S1402.	1.8	40

#	Article	lF	CITATIONS
91	Cascades of Transient Pores in Giant Vesicles: Line Tension and Transport. Biophysical Journal, 2003, 84, 1734-1749.	0.5	349
92	Coherent Scattering in Multi-Harmonic Light Microscopy. Biophysical Journal, 2001, 80, 1568-1574.	0.5	232
93	Permeation through Lipid Bilayers by Adhesion of Giant Vesicles on Decorated Surfaces. Langmuir, 2000, 16, 6801-6808.	3.5	26
94	Transient pores in stretched vesicles: role of leak-out. Physica A: Statistical Mechanics and Its Applications, 2000, 278, 32-51.	2.6	182
95	Adhesion of soft objects on wet substrates. Journal of Physics Condensed Matter, 2000, 12, A239-A244.	1.8	7
96	Shape transitions of giant liposomes induced by an anisotropic spontaneous curvature. Physical Review E, 2000, 62, 3865-3870.	2.1	35
97	Membrane imaging by second-harmonic generation microscopy. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 1685.	2.1	311
98	Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy. Optics Letters, 2000, 25, 320.	3.3	210
99	Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy: errata. Optics Letters, 2000, 25, 678.	3.3	5
100	Dynamics of transient pores in stretched vesicles. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10591-10596.	7.1	336
101	Assembly of microscopic highly magnetic droplets:â€∫Magnetic alignment versus viscous drag. Physical Review E, 1999, 59, 1736-1746.	2.1	57
102	Moving droplets on asymmetrically structured surfaces. Physical Review E, 1999, 60, 2964-2972.	2.1	83
103	Magnetic tubules. Materials Science and Engineering C, 1997, 5, 153-162.	7.3	28