
Athanassios Coutsolelos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/326430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unsymmetrical, monocarboxyalkyl meso-arylporphyrins in the photokilling of breast cancer cells using permethyl-β-cyclodextrin as sequestrant and cell uptake modulator. Carbohydrate Polymers, 2022, 275, 118666.	5.1	4
2	Design and Synthesis of Porphyrin–Nitrilotriacetic Acid Dyads with Potential Applications in Peptide Labeling through Metallochelate Coupling. ACS Omega, 2022, 7, 1803-1818.	1.6	5
3	Shape dependent photocatalytic H ₂ evolution of a zinc porphyrin. Dalton Transactions, 2022, , .	1.6	3
4	Defect passivation in perovskite solar cells using an amino-functionalized BODIPY fluorophore. Sustainable Energy and Fuels, 2022, 6, 2570-2580.	2.5	7
5	Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H ₂ production and CO ₂ reduction. Chemical Society Reviews, 2022, 51, 6965-7045.	18.7	116
6	Core–shell carbon-polymer quantum dot passivation for near infrared perovskite light emitting diodes. JPhys Photonics, 2022, 4, 034007.	2.2	1
7	Photoelectrochemical properties of dyads composed of porphyrin/ruthenium catalyst grafted on metal oxide semiconductors. Dyes and Pigments, 2021, 185, 108908.	2.0	9
8	Carbon dots for photocatalytic H ₂ production in aqueous media with molecular Co catalysts. Sustainable Energy and Fuels, 2021, 5, 449-458.	2.5	13
9	Controlling Solar Hydrogen Production by Organizing Porphyrins. ChemSusChem, 2021, 14, 961-970.	3.6	15
10	Ru(II) porphyrins as sensitizers for DSSCs: Axial vs. peripheral carboxylate anchoring group. , 2021, , 1089-1099.		0
11	Photocatalytic hydrogen production of porphyrin nanostructures: spheres <i>vs.</i> fibrils, a case study. Chemical Communications, 2021, 57, 4055-4058.	2.2	27
12	Synthesis and Characterization of a Covalent Porphyrinâ€Cobalt Diimineâ€Dioxime Dyad for Photoelectrochemical H 2 Evolution. European Journal of Inorganic Chemistry, 2021, 2021, 1122-1129.	1.0	10
13	Preparation of hydrogen, fluorine and chlorine doped and co-doped titanium dioxide photocatalysts: a theoretical and experimental approach. Scientific Reports, 2021, 11, 5700.	1.6	30
14	BODIPYâ€Ptâ€Porphyrins Polyads for Efficient Nearâ€Infrared Lightâ€Emitting Electrochemical Cells. Advanced Photonics Research, 2021, 2, 2000188.	1.7	10
15	Self-Assembly of Porphyrin Dipeptide Conjugates toward Hydrogen Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 7781-7791.	3.2	18
16	Nickel Complexes and Carbon Dots for Efficient Lightâ€Driven Hydrogen Production. European Journal of Inorganic Chemistry, 2021, 2021, 3097-3103.	1.0	6
17	Antenna Effect in BODIPY-(Zn)Porphyrin Entities Promotes H ₂ Evolution in Dye-Sensitized Photocatalytic Systems. ACS Applied Energy Materials, 2021, 4, 10042-10049.	2.5	16
18	Dye-Sensitized Photoelectrosynthesis Cells for Benzyl Alcohol Oxidation Using a Zinc Porphyrin Sensitizer and TEMPO Catalyst. ACS Catalysis, 2021, 11, 12075-12086.	5.5	38

#	Article	IF	CITATIONS
19	Gadolinium porphyrinate double-deckers for visible light driven H2 evolution. Polyhedron, 2021, 208, 115421.	1.0	1
20	Supramolecular Nanodrugs Constructed by Self-Assembly of Peptide Nucleic Acid–Photosensitizer Conjugates for Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 2-9.	2.3	33
21	Molecular self-assembly of porphyrin and BODIPY chromophores connected with diphenylalanine moieties. Journal of Porphyrins and Phthalocyanines, 2020, 24, 775-785.	0.4	1
22	Enhanced Organic and Perovskite Solar Cell Performance through Modification of the Electron-Selective Contact with a Bodipy–Porphyrin Dyad. ACS Applied Materials & Interfaces, 2020, 12, 1120-1131.	4.0	27
23	Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window. Nature Photonics, 2020, 14, 50-56.	15.6	72
24	Efficient light activation of a [Ru(bpy)(tpy)Cl]+ catalyst by a porphyrin photosensitizer at small driving force. Polyhedron, 2020, 190, 114775.	1.0	0
25	Manganese Porphyrin Interface Engineering in Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 7353-7363.	2.5	17
26	Molecular materials as interfacial layers and additives in perovskite solar cells. Chemical Society Reviews, 2020, 49, 4496-4526.	18.7	130
27	Interfacial engineering for organic and perovskite solar cells using molecular materials. Journal Physics D: Applied Physics, 2020, 53, 263001.	1.3	6
28	Photosensitizers for H ₂ Evolution Based on Charged or Neutral Zn and Sn Porphyrins. Inorganic Chemistry, 2020, 59, 1611-1621.	1.9	27
29	Benzothiadiazole Based Cascade Material to Boost the Performance of Inverted Ternary Organic Solar Cells. Energies, 2020, 13, 450.	1.6	7
30	Ru(II) porphyrins as sensitizers for DSSCs: Axial vs. peripheral carboxylate anchoring group. Journal of Porphyrins and Phthalocyanines, 2019, 23, 870-880.	0.4	1
31	Combining Zinc Phthalocyanines, Oligo(<i>p</i> â€Phenylenevinylenes), and Fullerenes to Impact Reorganization Energies and Attenuation Factors. ChemPhysChem, 2019, 20, 2806-2815.	1.0	6
32	Single hydroxo-bridged group 13 metalloporphyrin dimers: Solution studies and solid-state structures. Journal of Porphyrins and Phthalocyanines, 2019, 23, 969-989.	0.4	4
33	Porphyrinoid–Fullerene Hybrids as Candidates in Artificial Photosynthetic Schemes. Journal of Carbon Research, 2019, 5, 57.	1.4	17
34	A self-assembly study of PNA–porphyrin and PNA–BODIPY hybrids in mixed solvent systems. Nanoscale, 2019, 11, 3557-3566.	2.8	34
35	Efficient Light-Driven Hydrogen Evolution Using a Thiosemicarbazone-Nickel (II) Complex. Frontiers in Chemistry, 2019, 7, 405.	1.8	18
36	Self-assembly of aliphatic dipeptides coupled with porphyrin and BODIPY chromophores. Chemical Communications, 2019, 55, 14103-14106.	2.2	22

#	Article	IF	CITATIONS
37	Sequential, Ultrafast Energy Transfer and Electron Transfer in a Fused Zinc Phthalocyanineâ€freeâ€base Porphyrin ₆₀ Supramolecular Triad. ChemPhysChem, 2019, 20, 163-172.	1.0	11
38	Multi-electron reduction of Wells–Dawson polyoxometalate films onto metallic, semiconducting and dielectric substrates. Physical Chemistry Chemical Physics, 2019, 21, 427-437.	1.3	17
39	Increased Efficiency of Dyeâ€Sensitized Solar Cells by Incorporation of a Ï€ Spacer in Donor–Acceptor Zinc Porphyrins Bearing Cyanoacrylic Acid as an Anchoring Group. European Journal of Inorganic Chemistry, 2018, 2018, 2369-2379.	1.0	8
40	Supramolecular complex of a fused zinc phthalocyanine–zinc porphyrin dyad assembled by two imidazole-C ₆₀ units: ultrafast photoevents. Physical Chemistry Chemical Physics, 2018, 20, 7798-7807.	1.3	19
41	New Metalâ^'Free Porphyrins as Holeâ^'Transporting Materials in Mesoporous Perovskite Solar Cells ChemistrySelect, 2018, 3, 2536-2541.	0.7	10
42	Synthesis and characterization of zinc carboxy–porphyrin complexes for dye sensitized solar cells. New Journal of Chemistry, 2018, 42, 8151-8159.	1.4	10
43	Self-assembly of (boron-dipyrromethane)-diphenylalanine conjugates forming chiral supramolecular materials. Nanoscale, 2018, 10, 1735-1741.	2.8	23
44	Self-assembly study of nanometric spheres from polyoxometalate-phenylalanine hybrids, an experimental and theoretical approach. Dalton Transactions, 2018, 47, 6304-6313.	1.6	30
45	Enhancement of the photovoltaic performance in D 3 A porphyrin-based DSCs by incorporating an electron withdrawing triazole spacer. Polyhedron, 2018, 140, 9-18.	1.0	16
46	Peripheral Substitution of Tetraphenyl Porphyrins: Fineâ€Tuning Selfâ€Assembly for Enhanced Electroluminescence. ChemPlusChem, 2018, 83, 254-265.	1.3	4
47	A noble metal-free photocatalytic system based on a novel cobalt tetrapyridyl catalyst for hydrogen production in fully aqueous medium. Sustainable Energy and Fuels, 2018, 2, 553-557.	2.5	37
48	Effect of the triazole ring in zinc porphyrin-fullerene dyads on the charge transfer processes in NiO-based devices. Physical Chemistry Chemical Physics, 2018, 20, 24477-24489.	1.3	13
49	Water Molecules Gating a Photoinduced Oneâ€Electron Twoâ€Protons Transfer in a Tyrosine/Histidine (Tyr/His) Model of Photosystem II. Angewandte Chemie, 2018, 130, 9151-9155.	1.6	3
50	Water Molecules Gating a Photoinduced Oneâ€Electron Twoâ€Protons Transfer in a Tyrosine/Histidine (Tyr/His) Model of Photosystemâ€II. Angewandte Chemie - International Edition, 2018, 57, 9013-9017.	7.2	15
51	Engineering of Porphyrin Molecules for Use as Effective Cathode Interfacial Modifiers in Organic Solar Cells of Enhanced Efficiency and Stability. ACS Applied Materials & Interfaces, 2018, 10, 20728-20739.	4.0	22
52	Interfacing tetrapyridyl-C ₆₀ with porphyrin dimers <i>via</i> π-conjugated bridges: artificial photosynthetic systems with ultrafast charge separation. Physical Chemistry Chemical Physics, 2018, 20, 21269-21279.	1.3	10
53	Functionalized Zinc Porphyrins with Various Peripheral Groups for Interfacial Electron Injection Barrier Control in Organic Light Emitting Diodes. ACS Omega, 2018, 3, 10008-10018.	1.6	11
54	Triazine-Substituted Zinc Porphyrin as an Electron Transport Interfacial Material for Efficiency Enhancement and Degradation Retardation in Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 3216-3229.	2.5	33

#	Article	IF	CITATIONS
55	Supramolecular architectures featuring the antenna effect in solid state DSSCs. Sustainable Energy and Fuels, 2017, 1, 387-395.	2.5	19
56	Porphyrin–BODIPY-based hybrid model compounds forÂartificial photosynthetic reaction centers. Comptes Rendus Chimie, 2017, 20, 314-322.	0.2	25
57	Case Study for Artificial Photosynthesis: Noncovalent Interactions between C ₆₀ -Dipyridyl and Zinc Porphyrin Dimer. Journal of Physical Chemistry C, 2017, 121, 4850-4858.	1.5	18
58	Axially Assembled Photosynthetic Antenna-Reaction Center Mimics Composed of Boron Dipyrromethenes, Aluminum Porphyrin, and Fullerene Derivatives. Inorganic Chemistry, 2017, 56, 10268-10280.	1.9	29
59	Recent advances and insights in dye-sensitized NiO photocathodes for photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 21077-21113.	5.2	90
60	Synthesis, Characterization and Thermal Properties of Poly(ethylene oxide), PEO, Polymacromonomers via Anionic and Ring Opening Metathesis Polymerization. Polymers, 2017, 9, 145.	2.0	31
61	Assessment of UVA-Riboflavin Corneal Cross-Linking Using Small Amplitude Oscillatory Shear Measurements. , 2016, 57, 2240.		7
62	Two new bulky substituted Zn porphyrins bearing carboxylate anchoring groups as promising dyes for DSSCs. New Journal of Chemistry, 2016, 40, 5930-5941.	1.4	12
63	Photochemical hydrogen production and cobaloximes: the influence of the cobalt axial N-ligand on the system stability. Dalton Transactions, 2016, 45, 6732-6738.	1.6	84
64	Photochemical hydrogen evolution using Sn-porphyrin as photosensitizer and a series of Cobaloximes as catalysts. Journal of Porphyrins and Phthalocyanines, 2016, 20, 534-541.	0.4	17
65	Photocatalytic hydrogen production based on a water-soluble porphyrin derivative as sensitizer and a series of Wilkinson type complexes as catalysts. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1200-1206.	0.4	6
66	Corrole and Porphyrin Amino Acid Conjugates: Synthesis and Physicochemical Properties. Chemistry - A European Journal, 2016, 22, 11245-11252.	1.7	35
67	Porphyrinâ€5ensitized Evolution of Hydrogen using Dawson and Keplerate Polyoxometalate Photocatalysts. ChemSusChem, 2016, 9, 3213-3219.	3.6	37
68	A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine–phenylalanine motif. Nature Communications, 2016, 7, 12657.	5.8	75
69	Cunning metal core: efficiency/stability dilemma in metallated porphyrin based light-emitting electrochemical cells. Dalton Transactions, 2016, 45, 13284-13288.	1.6	34
70	Artificial hemes for DSSC and/or BHJ applications. Dalton Transactions, 2016, 45, 1111-1126.	1.6	35
71	Pyridyl vs. bipyridyl anchoring groups of porphyrin sensitizers for dye sensitized solar cells. RSC Advances, 2016, 6, 22187-22203.	1.7	18
72	Benefits of using BODIPY–porphyrin dyads for developing deep-red lighting sources. Chemical Communications, 2016, 52, 1602-1605.	2.2	60

ATHANASSIOS COUTSOLELOS

#	Article	IF	CITATIONS
73	"Click―reaction: An alternative tool for new architectures of porphyrin based derivatives. Coordination Chemistry Reviews, 2016, 306, 1-42.	9.5	76
74	Metathesis Polymerization Reactions Induced by the Bimetallic Complex (Ph4P)2[W2(μ-Br)3Br6]. Polymers, 2015, 7, 2611-2624.	2.0	6
75	A mono(carboxy)porphyrin-triazine-(bodipy) ₂ triad as a donor for bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2015, 3, 6209-6217.	2.7	29
76	Donor-Ï€-acceptor, triazine-linked porphyrin dyads as sensitizers for dye-sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2015, 19, 175-191.	0.4	5
77	Click made porphyrin–corrole dyad: a system for photo-induced charge separation. Dalton Transactions, 2015, 44, 13473-13479.	1.6	21
78	Efficient co-sensitization of dye-sensitized solar cells by novel porphyrin/triazine dye and tertiary aryl-amine organic dye. Organic Electronics, 2015, 25, 295-307.	1.4	47
79	A triazine di(carboxy)porphyrin dyad versus a triazine di(carboxy)porphyrin triad for sensitizers in DSSCs. Dalton Transactions, 2015, 44, 13550-13564.	1.6	16
80	Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material. Nanoscale, 2015, 7, 17827-17835.	2.8	42
81	Synergistic "ping-pong―energy transfer for efficient light activation in a chromophore–catalyst dyad. Physical Chemistry Chemical Physics, 2015, 17, 24166-24172.	1.3	8
82	A supramolecular assembling of zinc porphyrin with a π-conjugated oligo(phenylenevinylene) (oPPV) molecular wire for dye sensitized solar cell. RSC Advances, 2015, 5, 88508-88519.	1.7	18
83	Fiveâ€Coordinate Indium(III) Porphyrins with Hydroxy and Carboxy BODIPY as Axial Ligands: Synthesis, Characterization and Photophysical Studies. European Journal of Inorganic Chemistry, 2015, 2015, 468-477.	1.0	20
84	Tuning the reorganization energy of electron transfer in supramolecular ensembles – metalloporphyrin, oligophenylenevinylenes, and fullerene – and the impact on electron transfer kinetics. Nanoscale, 2015, 7, 2597-2608.	2.8	50
85	A "click-chemistry―approach for the synthesis of porphyrin dyads as sensitizers for dye-sensitized solar cells. Dalton Transactions, 2015, 44, 1734-1747.	1.6	29
86	Photochemical hydrogen generation with porphyrin-based systems. Coordination Chemistry Reviews, 2015, 304-305, 38-54.	9.5	171
87	Stepwise co-sensitization as a useful tool for enhancement of power conversion efficiency of dye-sensitized solar cells: The case of an unsymmetrical porphyrin dyad and a metal-free organic dye. Organic Electronics, 2014, 15, 1324-1337.	1.4	39
88	Photocatalytic hydrogen production from a noble metal free system based on a water soluble porphyrin derivative and a cobaloxime catalyst. Chemical Communications, 2014, 50, 521-523.	2.2	88
89	Large work function shift of organic semiconductors inducing enhanced interfacial electron transfer in organic optoelectronics enabled by porphyrin aggregated nanostructures. Nano Research, 2014, 7, 679-693.	5.8	46
90	A New Approach for the Photosynthetic Antenna–Reaction Center Complex with a Model Organized Around an <i>s</i> â€īriazine Linker. Chemistry - A European Journal, 2014, 20, 2049-2057.	1.7	17

#	Article	IF	CITATIONS
91	A Propellerâ€Shaped, Triazineâ€Linked Porphyrin Triad as Efficient Sensitizer for Dyeâ€Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2014, 2014, 1020-1033.	1.0	43
92	Triazine-Bridged Porphyrin Triad as Electron Donor for Solution-Processed Bulk Hetero-Junction Organic Solar Cells. Journal of Physical Chemistry C, 2014, 118, 5968-5977.	1.5	50
93	Functionalized porphyrin derivatives for solar energy conversion. Polyhedron, 2014, 82, 19-32.	1.0	45
94	Porphyrin oriented self-assembled nanostructures for efficient exciton dissociation in high-performing organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 182-192.	5.2	60
95	Dye-sensitized solar cells based on triazine-linked porphyrin dyads containing one or two carboxylic acid anchoring groups. Inorganic Chemistry Frontiers, 2014, 1, 256-270.	3.0	21
96	New solution processed bulk-heterojunction organic solar cells based on a triazine-bridged porphyrin dyad as electron donor. RSC Advances, 2014, 4, 50819-50827.	1.7	14
97	The importance of various anchoring groups attached on porphyrins as potential dyes for DSSC applications. RSC Advances, 2014, 4, 21379-21404.	1.7	125
98	Electrospinning of Tetraphenylporphyrin Compounds into Wires. Particle and Particle Systems Characterization, 2014, 31, 88-93.	1.2	27
99	Emergence of ambient temperature ferroelectricity in <i>meso</i> -tetrakis(1-methylpyridinium-4-yl)porphyrin chloride thin films. Applied Physics Letters, 2013, 103, 022908.	1.5	5
100	A corrole–azafullerene dyad: synthesis, characterization, electronic interactions and photoinduced charge separation. Chemical Communications, 2013, 49, 9128.	2.2	30
101	Efficient Sensitization of Dye-Sensitized Solar Cells by Novel Triazine-Bridged Porphyrin–Porphyrin Dyads. Inorganic Chemistry, 2013, 52, 9813-9825.	1.9	51
102	New soluble porphyrin bearing a pyridinylethynyl group as donor for bulk heterojunction solar cells. Organic Electronics, 2013, 14, 1811-1819.	1.4	31
103	CO and O2 binding studies of new model complexes for CcO. Polyhedron, 2013, 54, 47-53.	1.0	3
104	Enhancement of power conversion efficiency of dye-sensitized solar cells by co-sensitization of zinc-porphyrin and thiocyanate-free ruthenium(ii)-terpyridine dyes and graphene modified TiO2 photoanode. RSC Advances, 2013, 3, 22412.	1.7	67
105	Effect of thiourea incorporation in the electrolyte on the photovoltaic performance of the DSSC sensitized with pyridyl functionalized porphyrin. Electrochimica Acta, 2013, 102, 459-465.	2.6	29
106	Photoinduced Charge Transfer in Porphyrin–Cobaloxime and Corrole–Cobaloxime Hybrids. Journal of Physical Chemistry C, 2013, 117, 1647-1655.	1.5	62
107	Visible Light-Driven O ₂ Reduction by a Porphyrin–Laccase System. Journal of the American Chemical Society, 2013, 135, 3095-3103.	6.6	49
108	Significant enhancement in the power conversion efficiency of porphyrin based dye sensitized solar cell by co-sensitization with metal free dye. Journal of Renewable and Sustainable Energy, 2013, 5, 023108.	0.8	6

#	Article	IF	CITATIONS
109	Synthesis, Characterization and Electronic Properties of <i>trans</i> â€{4â€{Alkoxycarbonyl)phenyl]porphyrinâ€{Ru ^{II} (bpy) ₃] ₂ Complexes or Boron–Dipyrrin Conjugates as Panchromatic Sensitizers for DSSCs. European Journal of Inorganic Chemistry, 2013, 2013, 1275-1286.	1.0	10
110	New hybrid materials with porphyrin-ferrocene and porphyrin-pyrene covalently linked to single-walled carbon nanotubes. RSC Advances, 2013, 3, 5539.	1.7	13
111	Noble metal porphyrin derivatives bearing carboxylic groups: Synthesis, characterization and photophysical study. Polyhedron, 2013, 52, 1016-1023.	1.0	16
112	A new porphyrin bearing a pyridinylethynyl group as sensitizer for dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 253, 88-96.	2.0	49
113	General and Efficient Protocol for Formylation of Aromatic and Heterocyclic Phenols. Synthesis, 2012, 44, 3683-3687.	1.2	18
114	Synthesis, RNA binding and nuclease activity of porphyrin-hydroxamic acid derivatives. Journal of Porphyrins and Phthalocyanines, 2012, 16, 997-1005.	0.4	8
115	Meso-substituted Porphyrin Derivatives via Palladium-Catalyzed Amination Showing Wide Range Visible Absorption: Synthesis and Photophysical Studies. Inorganic Chemistry, 2012, 51, 10548-10556.	1.9	47
116	N@C ₆₀ –Porphyrin: A Dyad of Two Radical Centers. Journal of the American Chemical Society, 2012, 134, 1938-1941.	6.6	34
117	Porphyrins in bio-inspired transformations: Light-harvesting to solar cell. Coordination Chemistry Reviews, 2012, 256, 2601-2627.	9.5	258
118	A new family of A2B2 type porphyrin derivatives: synthesis, physicochemical characterization and their application in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 8092.	6.7	45
119	Photophysical, electrochemical and photovoltaic properties of dye sensitized solar cells using a series of pyridyl functionalized porphyrin dyes. RSC Advances, 2012, 2, 12899.	1.7	76
120	Carbon Nanohorn–Porphyrin Dimer Hybrid Material for Enhancing Light-Energy Conversion. Journal of Physical Chemistry C, 2012, 116, 9439-9449.	1.5	52
121	Electron vs Energy Transfer in Arrays Featuring Two Bodipy Chromophores Axially Bound to a Sn(IV) Porphyrin via a Phenolate or Benzoate Bridge. Inorganic Chemistry, 2012, 51, 4193-4204.	1.9	77
122	Promising Fast Energy Transfer System via an Easy Synthesis: Bodipy–Porphyrin Dyads Connected via a Cyanuric Chloride Bridge, Their Synthesis, and Electrochemical and Photophysical Investigations. Inorganic Chemistry, 2011, 50, 8926-8936.	1.9	101
123	Aqueous–Organic Biphasic Hydrogenation of <i>trans</i> innamaldehyde Catalyzed by Rhodium and Ruthenium Phosphaneâ€Free Porphyrin Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 4709-4716.	1.0	20
124	Selfâ€Assembly Into Spheres of a Hybrid Diphenylalanine–Porphyrin: Increased Fluorescence Lifetime and Conserved Electronic Properties. Chemistry - A European Journal, 2011, 17, 7213-7219.	1.7	51
125	Inside Cover: Selfâ€Assembly Into Spheres of a Hybrid Diphenylalanine–Porphyrin: Increased Fluorescence Lifetime and Conserved Electronic Properties (Chem. Eur. J. 26/2011). Chemistry - A European Journal, 2011, 17, 7122-7122.	1.7	0
126	Novel zinc porphyrin with phenylenevinylene meso-substituents: Synthesis and application in dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 6622-6628.	4.0	39

#	Article	IF	CITATIONS
127	DNA-Interaction and nuclease activity of porphyrin-hydroxamic acid derivatives in the presence of lanthanides. Journal of Porphyrins and Phthalocyanines, 2011, 15, 704-717.	0.4	4
128	Spectroscopic and electrochemical studies of novel model compounds for cytochrome c oxidase. Inorganica Chimica Acta, 2010, 363, 2201-2208.	1.2	9
129	Synthesis and Studies of a Superâ€Structured Porphyrin Derivative – A Potential Building Block for C <i>c</i> O Mimic Models. European Journal of Organic Chemistry, 2009, 2009, 1263-1268.	1.2	16
130	Characterization and Photoelectrochemical Properties of Nanostructured Thin Film Composed of Carbon Nanohorns Covalently Functionalized with Porphyrins. Journal of Physical Chemistry C, 2008, 112, 15735-15741.	1.5	52
131	Coordination and structural studies of crowned-porphyrins. Dalton Transactions, 2007, , 3684.	1.6	13
132	Gadolinium Acetylacetonate Tetraphenyl Monoporphyrinate Complex and Some of Its Derivatives: EXAFS Study and Molecular Dynamics Simulation. Inorganic Chemistry, 2007, 46, 6871-6879.	1.9	6
133	Covalent Functionalization of Carbon Nanohorns with Porphyrins: Nanohybrid Formation and Photoinduced Electron and Energy Transfer. Advanced Functional Materials, 2007, 17, 1705-1711.	7.8	92
134	A strategic approach for the synthesis of new porphyrin rings, attractive for heme model purpose. Tetrahedron, 2007, 63, 2882-2887.	1.0	10
135	The first use of porphyrins as catalysts in cross-coupling reactions: a water-soluble palladium complex with a porphyrin ligand as an efficient catalyst precursor for the Suzuki–Miyaura reaction in aqueous media under aerobic conditions. Tetrahedron Letters, 2007, 48, 6688-6691.	0.7	80
136	Photochemically-induced ligand exchange reactions of ethoxy-oxo-molybdenum(V) tetraphenylporphyrin in chlorinated solvents. Polyhedron, 2006, 25, 3427-3434.	1.0	10
137	Novel crowned-porphyrin ligands. Synthesis and conformational studies. Tetrahedron, 2006, 62, 3056-3064.	1.0	15
138	Perhalogenated porphyrinic derivatives with indium and thallium: the X-ray structures of (β-Cl4TPP)Tl(Cl), (β-Cl4TPP)In(Cl) and (TpFTPP)Tl(Cl). Polyhedron, 2004, 23, 1777-1784.	1.0	12
139	Spectroscopic and Structural Study of Metalâ^'Metal Bonded Metalloporphyrinic Derivatives:Â the Case of Rhodiumâ^'Indium. Inorganic Chemistry, 2004, 43, 4363-4371.	1.9	8
140	Synthesis and Characterization of a New Asymmetric Bis-Porphyrinato Lanthanide Complex Presenting Mixed Hydrophilicâ^'Hydrophobic Properties and Its Precursor Form. Inorganic Chemistry, 2003, 42, 6801-6804.	1.9	12
141	Efficient biomimetic catalytic epoxidation of polyene polymers by manganese porphyrins. Journal of Inorganic Biochemistry, 2003, 94, 161-170.	1.5	20
142	Comparative Study of Structure⠴`Properties Relationship for Novel β-Halogenated Lanthanide Porphyrins and Their Nickel and Free Bases Precursors, as a Function of Number and Nature of Halogens Atoms⊥. Inorganic Chemistry, 2002, 41, 2648-2659.	1.9	74
143	XAFS Study of Gadolinium and Samarium Bisporphyrinate Complexes. Inorganic Chemistry, 2001, 40, 6088-6096.	1.9	14
144	Conformational analysis of octa- and tetrahalogenated tetraphenylporphyrins and their metal derivatives. Journal of Molecular Structure, 2001, 595, 209-224.	1.8	23

#	Article	IF	CITATIONS
145	Synthesis and Physicochemical Characterization of Protonated and Deprotonated Forms in Heteroleptic Lanthanide(III) Porphyrinate Double-Deckers. X-ray Structure of GdIIIH(oep)(tpp) at 298 and 21 K. Inorganic Chemistry, 1999, 38, 1683-1696.	1.9	42
146	Comparative 1HNMR and UV-Visible Studies of Polyene Polymer Epoxidations Catalyzed by Iron(III), Manganese(III) and Chromium(III) Porphyrins. Journal of Porphyrins and Phthalocyanines, 1998, 02, 53-60.	0.4	5
147	Heterometallic Homo- and Heteroleptic Porphyrinate Dimers with a Rhodiumâ^'Thallium Bond. Inorganic Chemistry, 1998, 37, 3675-3681.	1.9	19
148	205Tl(III)-NMR Study of Thallium(III) Metalloporphyrins. Inorganic Chemistry, 1997, 36, 4614-4615.	1.9	8
149	First X-ray crystal structure of a lanthanide(iii) monoporphyrinic complex using non-planar porphyrin rings. Chemical Communications, 1997, , 783-784.	2.2	24
150	Structural and Dynamic Information on Double-Decker Yb3+and Dy3+Porphyrin Complexes in Solution through1H NMR. Inorganic Chemistry, 1996, 35, 6308-6315.	1.9	33
151	Evidence of Protonated and Deprotonated Forms of Symmetrical and Asymmetrical Lutetium(III) Porphyrin Double-Deckers by1H-NMR Spectroscopy. Inorganic Chemistry, 1996, 35, 1382-1385.	1.9	35
152	ELECTROCHEMICAL STUDIES OF PROTONATED AND DEPROTONATED FORMS OF HETEROLEPTIC AND HOMOLEPTIC EUROPIUM(III)AND DYSPROSIUM(III)PORPHYRIN DOUBLE-DECKERS. Journal of Coordination Chemistry, 1996, 39, 89-96.	0.8	4
153	Synthesis and spectroscopic studies of lanthanide monoporphyrinates with meso-tetra-aryl porphyrinate bearing bromines on the β-pyrrole positions of fluorines on phenyl groups. Polyhedron, 1995, 14, 2483-2490.	1.0	20
154	Cationic lanthanide monoporphyrinates with Sm, Eu, Gd and Tb, synthesis and spectroscopic properties in aqueous and non-aqueous media. Polyhedron, 1995, 14, 3563-3571.	1.0	20
155	Synthesis, Characterization, and X-ray Study of a Heteroleptic Samarium(III) Porphyrin Double Decker Complex. Inorganic Chemistry, 1995, 34, 2476-2479.	1.9	53
156	Photophysical characterization of hematoporphyrin incorporated within collagen gels. Journal of Photochemistry and Photobiology B: Biology, 1994, 22, 45-50.	1.7	5
157	1H-NMR Spectroscopic Elucidation of Stereochemical Effects of Substituted Cerium Porphyrin Double-Deckers. Inorganic Chemistry, 1994, 33, 3430-3434.	1.9	36
158	Metalloporphyrins catalyze polyene-polymers to polyepoxides. Journal of Polymer Science Part A, 1992, 30, 2791-2795.	2.5	5
159	Metalloporphyrins catalyse cis-polybutadiene to polyepoxide. Polymer, 1992, 33, 1771-1772.	1.8	21
160	Pseudohalogeno-bonding of thallium(III) porphyrins, stabilisation of isocyano bonding. Crystal structure of isocyano(5,10,15,20-tetraphenylporphyrinato)thallium(III). Journal of the Chemical Society Dalton Transactions, 1991, , 3413.	1.1	9
161	Synthesis and properties of fluorothallium(III) porphyrins. X-ray crystal structure of fluoro-(5,10,15,20-tetraphenylporphyrinato) thallium(III). Polyhedron, 1991, 10, 885-892.	1.0	13
162	The Metalloporphyrins of Group IIIB as Precursors in Low-Dimensional Solids. NATO ASI Series Series B: Physics, 1990, , 217-222.	0.2	0

#	Article	IF	CITATIONS
163	Synthesis and characterisation of azido- and thiocyanato-gallium(III) porphyries. Crystal structure of azido(2,3,7,8,12,13,17,18-octaethyl-porphyrinato)gallium(III). Journal of the Chemical Society Dalton Transactions, 1986, , 1779.	1.1	15
164	Gallium(III) porphyrins: synthesis and physicochemical characteristics of halogeno gallium(III) porphyrins—X-ray crystal structure of chloro-(5,10,15,20-tetraphenylporphyrinato) gallium(III). Polyhedron, 1986, 5, 1157-1164.	1.0	37
165	Bridge-stacked polymeric structure of a fluorinated Ga(III) porphyrin deduced from a perturbed difference fourier analysis of EXAFS spectra. Chemical Physics, 1984, 83, 367-375.	0.9	21
166	67Zn NMR, a Tool for Coordination Chemistry Problems. , 0, , 147-161.		1
167	Photocatalytic Hydrogen Production with Porphyrin Double Deckers. SSRN Electronic Journal, 0, , .	0.4	0
168	Pegylated-polycaprolactone nano-sized drug delivery platforms loaded with biocompatible silver(I) complexes for anticancer therapeutics. RSC Medicinal Chemistry, 0, , .	1.7	1
169	Cascades of Energy and Electron Transfer in a Panchromatic Absorber. Nanoscale, 0, , .	2.8	3
170	Functionalized BODIPYs as Tailorâ€Made and Universal Interlayers for Efficient and Stable Organic and Perovskite Solar Cells. Advanced Materials Interfaces, 0, , 2102324.	1.9	3