Pavel KoÄovský

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3264186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reductive Amination Revisited: Reduction of Aldimines with Trichlorosilane Catalyzed by Dimethylformamide─Functional Group Tolerance, Scope, and Limitations. Journal of Organic Chemistry, 2022, 87, 920-943.	3.2	13
2	Non-enzymatic Electrochemical Determination of Cholesterol in Dairy Products on Boron-doped Diamond Electrode. Food Chemistry, 2022, , 133278.	8.2	4
3	Reaction Outcome Critically Dependent on the Method of Workup: An Example from the Synthesis of 1-Isoquinolones. Journal of Organic Chemistry, 2021, 86, 8078-8088.	3.2	4
4	Voltammetry of 7-dehydrocholesterol as a new and useful tool for Smith-Lemli-Opitz syndrome diagnosis. Talanta, 2021, 229, 122260.	5.5	3
5	Nucleophile-assisted cyclization of β-propargylamino acrylic compounds catalyzed by gold(<scp>i</scp>): a rapid construction of multisubstituted tetrahydropyridines and their fused derivatives. Organic Chemistry Frontiers, 2020, 7, 3356-3367.	4.5	5
6	A novel voltammetric approach to the detection of primary bile acids in serum samples. Bioelectrochemistry, 2020, 134, 107539.	4.6	7
7	A New Insight into the Stereoelectronic Control of the Pd O atalyzed Allylic Substitution: Application for the Synthesis of Multisubstituted Pyranâ€2â€ones via an Unusual 1,3â€Transposition. Chemistry - A European Journal, 2019, 25, 8053-8060.	3.3	2
8	Bile acids: Electrochemical oxidation on bare electrodes after acid-induced dehydration. Electrochemistry Communications, 2018, 86, 99-103.	4.7	11
9	Crossâ€Aldol Reaction of Isatin with Acetone Catalyzed by Leucinol: A Mechanistic Investigation. Chemistry - A European Journal, 2015, 21, 12026-12033.	3.3	15
10	The <i>syn</i> / <i>anti</i> â€Dichotomy in the Palladium atalyzed Addition of Nucleophiles to Alkenes. Chemistry - A European Journal, 2015, 21, 36-56.	3.3	112
11	Proton Affinities of Organocatalysts Derived from Pyridine N-oxide. Croatica Chemica Acta, 2014, 87, 349-356.	0.4	5
12	Palladiumâ€Catalyzed Stereoselective Intramolecular Oxidative Amidation of Alkenes in the Synthesis of 1,3―and 1,4â€Amino Alcohols and 1,3â€Diamines. Chemistry - A European Journal, 2014, 20, 4901-4905.	3.3	20
13	Palladiumâ€Catalyzed Alkoxycarbonylation of Terminal Alkenes To Produce α,βâ€Unsaturated Esters: The Key Role of Acetonitrile as a Ligand. Chemistry - A European Journal, 2014, 20, 4542-4547.	3.3	26
14	Mechanistic Dichotomy in the Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes Catalyzed by Chiral Pyridine <i>N</i> â€Oxides. Chemistry - A European Journal, 2013, 19, 9167-9185.	3.3	33
15	Catalyst development for organocatalytic hydrosilylation of aromatic ketones and ketimines. Organic and Biomolecular Chemistry, 2012, 10, 4864.	2.8	33
16	Stereoselective Palladiumâ€Catalyzed Functionalization of Homoallylic Alcohols: A Convenient Synthesis of Di―and Trisubstituted Isoxazolidines and βâ€Aminoâ€Î´â€Hydroxy Esters. Chemistry - A European Journal, 2012, 18, 6873-6884.	3.3	34
17	A Modular Approach to Aryl-C-ribonucleosides via the Allylic Substitution and Ring-Closing Metathesis Sequence. A Stereocontrolled Synthesis of All Four α-/β- andd-/l-C-Nucleoside Stereoisomers. Journal of Organic Chemistry, 2011, 76, 7781-7803.	3.2	23
18	Enantioselective Allylation of \hat{l}_{\pm}, \hat{l}^2 -Unsaturated Aldehydes with Allyltrichlorosilane Catalyzed by METHOX. Journal of Organic Chemistry, 2011, 76, 4800-4804.	3.2	33

#	Article	IF	CITATIONS
19	Mapping lipid and detergent molecules at the surface of membrane proteins. Biochemical Society Transactions, 2011, 39, 775-779.	3.4	5
20	A Novel Bifunctional Allyldisilane as a Triple Allylation Reagent in the Stereoselective Synthesis of Trisubstituted Tetrahydrofurans. Chemistry - A European Journal, 2011, 17, 7162-7166.	3.3	41
21	New monoterpene-derived phosphinopyridine ligands and their application in the enantioselective iridium-catalyzed hydrogenation. Tetrahedron, 2011, 67, 5421-5431.	1.9	26
22	Synthesis of Î ³ -functionalized allyltrichlorosilanes and their application in the asymmetric allylation of aldehydes. Tetrahedron: Asymmetry, 2010, 21, 1173-1175.	1.8	15
23	Dendron-anchored organocatalysts: the asymmetric reduction of imines with trichlorosilane, catalysed by an amino acid-derived formamide appended to a dendron. Organic and Biomolecular Chemistry, 2010, 8, 137-141.	2.8	29
24	Enantioselective and Catalytic Method for αâ€Crotylation of Aldehydes with a Kinetic Selfâ€Refinement of Stereochemistry. Chemistry - A European Journal, 2009, 15, 1570-1573.	3.3	51
25	Soluble Polymer‣upported Organocatalysts: Asymmetric Reduction of Imines with Trichlorosilane Catalyzed by an Amino Acid Derived Formamide Anchored to a Soluble Polymer. Chemistry - A European Journal, 2009, 15, 9651-9654.	3.3	31
26	New organocatalysts for the asymmetric reduction of imines with trichlorosilane. Tetrahedron, 2009, 65, 9481-9486.	1.9	39
27	Weak intra- and intermolecular interactions in a binaphthol imine: an experimental charge-density study on (±)-8′-benzhydrylideneamino-1,1′-binaphthyl-2-ol. Acta Crystallographica Section B: Structural Science, 2009, 65, 757-769.	1.8	31
28	Asymmetric Reduction of Imines with Trichlorosilane, Catalyzed by Sigamide, an Amino Acid-Derived Formamide: Scope and Limitations ^{â€} . Journal of Organic Chemistry, 2009, 74, 5839-5849.	3.2	125
29	Organocatalysts immobilised onto gold nanoparticles: application in the asymmetric reduction of imines with trichlorosilane. Organic and Biomolecular Chemistry, 2009, 7, 1878.	2.8	47
30	On the Selective <i>N</i> -Methylation of BOC-Protected Amino Acids. Journal of Organic Chemistry, 2009, 74, 8425-8427.	3.2	32
31	<i>C</i> -Nucleosides: Synthetic Strategies and Biological Applications. Chemical Reviews, 2009, 109, 6729-6764.	47.7	309
32	Desymmetrization of Cyclic <i>meso</i> -Epoxides with Silicon Tetrachloride Catalyzed by PINDOX, a Chiral Bipyridine Mono- <i>N</i> -oxide. Organic Letters, 2009, 11, 5390-5393.	4.6	48
33	Dynamic Kinetic Resolution in the Asymmetric Synthesis of βâ€Amino Acids by Organocatalytic Reduction of Enamines with Trichlorosilane. Chemistry - A European Journal, 2008, 14, 8082-8085.	3.3	88
34	New pinene-derived pyridines as bidentate chiral ligands. Tetrahedron, 2008, 64, 4011-4025.	1.9	49
35	New pyridine N-oxides as chiral organocatalysts in the asymmetric allylation of aromatic aldehydes. Tetrahedron, 2008, 64, 11335-11348.	1.9	77
36	Synthesis of (R)- and (S)-2-N-methylamino-2,3-dimethylbutanamides and (R)- and (S)-(5-isopropyl-1,5-dimethyl-4,5-dihydro-1H-imidazol-4-on-2-yl)pyridines. Tetrahedron: Asymmetry, 2008, 19, 384-390.	1.8	9

ΡΑνει ΚοΆονsκÃ1/2

#	Article	IF	CITATIONS
37	Asymmetric synthesis: From transition metals to organocatalysis. Pure and Applied Chemistry, 2008, 80, 953-966.	1.9	28
38	Enantioselective Baeyer–Villiger Oxidation Catalyzed by Palladium(II) Complexes with Chiral <i>P,N</i> -Ligands. Journal of Organic Chemistry, 2008, 73, 3996-4003.	3.2	75
39	On the Mechanism of Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes Catalyzed by QUINOX, a Chiral Isoquinoline <i>N</i> -Oxide. Journal of the American Chemical Society, 2008, 130, 5341-5348.	13.7	121
40	Preparation of Boc-Protected Cinnamyl-Type Alcohols: A Comparison of the Suzuki-Miyaura Coupling, Cross-Metathesis, and Horner-Wadsworth-Emmons Approaches and Their Merit in Parallel Synthesis. Collection of Czechoslovak Chemical Communications, 2008, 73, 705-732.	1.0	12
41	Synthesis of Enantiopure 1-Arylprop-2-en-1-ols and Their tert-Butyl Carbonates. Journal of Organic Chemistry, 2008, 73, 9148-9150.	3.2	32
42	Polymer-Supported Organocatalysts: Asymmetric Reduction of Imines with Trichlorosilane Catalyzed by an Amino Acid-Derived Formamide Anchored to a Polymer. Journal of Organic Chemistry, 2008, 73, 3985-3995.	3.2	59
43	Vicinal Amino Alcohols as Organocatalysts in Asymmetric Cross-Aldol Reaction of Ketones: Application in the Synthesis of Convolutamydine A. Organic Letters, 2007, 9, 5473-5476.	4.6	178
44	Enantioselective Synthesis of 1,2-Diarylaziridines by the Organocatalytic Reductive Amination of α-Chloroketones. Angewandte Chemie - International Edition, 2007, 46, 3722-3724.	13.8	105
45	Chiral N â€Oxides in Asymmetric Catalysis. European Journal of Organic Chemistry, 2007, 2007, 29-36.	2.4	254
46	Organocatalysis with a Fluorous Tag: Asymmetric Reduction of Imines with Trichlorosilane Catalyzed by Amino Acid-Derived Formamidesâ€. Journal of Organic Chemistry, 2007, 72, 1315-1325.	3.2	99
47	Formamides derived from N-methyl amino acids serve as new chiral organocatalysts in the enantioselective reduction of aromatic ketimines with trichlorosilane. Tetrahedron, 2006, 62, 264-284.	1.9	101
48	Amino Acid Derived Hydroxamic Acids as Chiral Ligands in the Vanadium-Catalyzed Epoxidation ChemInform, 2006, 37, no.	0.0	0
49	Asymmetric Allylic Substitution Catalyzed byC1-Symmetrical Complexes of Molybdenum: Structural Requirements of the Ligand and the Stereochemical Course of the Reaction. Chemistry - A European Journal, 2006, 12, 6910-6929.	3.3	75
50	Remote Chiral Induction in the Organocatalytic Hydrosilylation of Aromatic Ketones and Ketimines. Angewandte Chemie - International Edition, 2006, 45, 1432-1435.	13.8	140
51	METHOX: A New Pyridine N-Oxide Organocatalyst for the Asymmetric Allylation of Aldehydes with Allyltrichlorosilanes ChemInform, 2005, 36, no.	0.0	0
52	METHOX:  A New PyridineN-Oxide Organocatalyst for the Asymmetric Allylation of Aldehydes with Allyltrichlorosilanesâ€. Organic Letters, 2005, 7, 3219-3222.	4.6	145
53	Amino acid-derived hydroxamic acids as chiral ligands in the vanadium catalysed epoxidation. Organic and Biomolecular Chemistry, 2005, 3, 3194.	2.8	31
54	Towards a novel approach to C-nucleosides. , 2005, , .		0

4

#	Article	IF	CITATIONS
55	From transition metals to organocatalysis. Russian Chemical Bulletin, 2004, 53, 1806-1812.	1.5	17
56	Chiral recognition in solution and the gas phase. Experimental and theoretical studies of aromaticD- andL-amino acid–Cu(II)–chiragen complexes. Journal of Mass Spectrometry, 2004, 39, 1044-1052.	1.6	26
57	Reactivity Control in Palladium-Catalyzed Reactions: A Personal Account ChemInform, 2004, 35, no.	0.0	0
58	Role of Noncovalent Interactions in the Enantioselective Reduction of Aromatic Ketimines with Trichlorosilane ChemInform, 2004, 35, no.	0.0	0
59	Role of Noncovalent Interactions in the Enantioselective Reduction of Aromatic Ketimines with Trichlorosilane. Organic Letters, 2004, 6, 2253-2256.	4.6	165
60	Synthesis of 2-Hydroxy-8′-(hydroxymethyl)-1,1′-binaphthalene (iso-Homo-Binol). A New Structural Pattern in the Binaphthyl Realm ChemInform, 2003, 34, no.	0.0	0
61	Synthesis of New Chiral 2,2′-Bipyridine Ligands and Their Application in Copper-Catalyzed Asymmetric Allylic Oxidation and Cyclopropanation ChemInform, 2003, 34, no.	0.0	0
62	Non-Symmetrically Substituted 1,1′-Binaphthyls in Enantioselective Catalysis. ChemInform, 2003, 34, no.	0.0	0
63	A Long-Range Chiral Relay via Tertiary Amide Group in Asymmetric Catalysis: New Amino Acid-Derived N,P-Ligands for Copper-Catalyzed Conjugate Addition ChemInform, 2003, 34, no.	0.0	0
64	Quinox, a Quinoline-Type N-Oxide, as Organocatalyst in the Asymmetric Allylation of Aromatic Aldehydes with Allyltrichlorosilanes: The Role of Arene—Arene Interactions ChemInform, 2003, 34, no.	0.0	0
65	Asymmetric Allylation of Aldehydes with Allyltrichlorosilane Promoted by Chiral Sulfoxides ChemInform, 2003, 34, no.	0.0	0
66	Quinox, a Quinoline-TypeN-Oxide, as Organocatalyst in the Asymmetric Allylation of Aromatic Aldehydes with Allyltrichlorosilanes: The Role of Arene–Arene Interactions. Angewandte Chemie - International Edition, 2003, 42, 3674-3677.	13.8	187
67	Reactivity control in palladium-catalyzed reactions: a personal account. Journal of Organometallic Chemistry, 2003, 687, 256-268.	1.8	26
68	2H-quadrupolar coupling-based analysis of stereochemical and regiochemical memory in the Pd-catalysed allylic alkylation of iso-cinnamyl type substrates employing the chiral monophosphine ligands â€~MOP' and â€~MAP'. Journal of Organometallic Chemistry, 2003, 687, 525-537.	1.8	31
69	Asymmetric allylation of aldehydes with allyltrichlorosilane promoted by chiral sulfoxides. Tetrahedron Letters, 2003, 44, 7179-7181.	1.4	71
70	New pyridine-derived N-oxides as chiral organocatalysts in asymmetric allylation of aldehydes. Journal of Molecular Catalysis A, 2003, 196, 179-186.	4.8	66
71	Synthesis of 2-Hydroxy-8'-(hydroxymethyl)-1,1'-binaphthalene (iso-Homo-BINOL). A New Structural Pattern in the Binaphthyl Realm. Collection of Czechoslovak Chemical Communications, 2003, 68, 907-916.	1.0	3
72	Synthesis of α-Amino Acids via Asymmetric Phase Transfer-Catalyzed Alkylation of Achiral Nickel(II) Complexes of Glycine-Derived Schiff Bases. Journal of the American Chemical Society, 2003, 125, 12860-12871.	13.7	101

ΡΑνει ΚοӒονský

#	Article	IF	CITATIONS
73	Synthesis of New Chiral 2,2â€~-Bipyridine Ligands and Their Application in Copper-Catalyzed Asymmetric Allylic Oxidation and Cyclopropanation. Journal of Organic Chemistry, 2003, 68, 4727-4742.	3.2	126
74	New Lewis-BasicN-Oxides as Chiral Organocatalysts in Asymmetric Allylation of Aldehydes. Journal of Organic Chemistry, 2003, 68, 9659-9668.	3.2	126
75	Non-Symmetrically Substituted 1,1â€~-Binaphthyls in Enantioselective Catalysis. Chemical Reviews, 2003, 103, 3213-3246.	47.7	475
76	A long-range chiral relay via tertiary amide group in asymmetric catalysis: new amino acid-derived N,P-ligands for copper-catalysed conjugate addition. Chemical Communications, 2003, , 1948-1949.	4.1	39
77	Electrochemical recognition of analytes using quaternary ammonium binaphthyl salts. Analyst, The, 2003, 128, 245-248.	3.5	3
78	Chiral Bipyridine Derivatives in Asymmetric Catalysis. Current Organic Chemistry, 2003, 7, 1737-1757.	1.6	101
79	Chiral 2,2â€~-Bipyridine-TypeN-Monoxides as Organocatalysts in the Enantioselective Allylation of Aldehydes with Allyltrichlorosilaneâ€. Organic Letters, 2002, 4, 1047-1049.	4.6	180
80	Electrochemical Recognition of Chiral Species Using Quaternary Ammonium Binaphthyl Salts. Analytical Chemistry, 2002, 74, 4002-4006.	6.5	14
81	Analysis of Stereochemical Convergence in Asymmetric Pd-Catalysed Allylic Alkylation Reactions Complicated by Halide and Memory Effects. Chemistry - A European Journal, 2002, 8, 4443-4453.	3.3	50
82	2,8′-Disubstituted-1,1′-Binaphthyls: A New Pattern in Chiral Ligands. Chemistry - A European Journal, 2002, 8, 4633-4648.	3.3	57
83	Synthesis of New Chiral 2,2â€~-Bipyridyl-Type Ligands, Their Coordination to Molybdenum(0), Copper(II), and Palladium(II), and Application in Asymmetric Allylic Substitution, Allylic Oxidation, and Cyclopropanation. Organometallics, 2001, 20, 673-690.	2.3	127
84	Tetrahydrocannabinol Revisited: Synthetic Approaches Utilizing Molybdenum Catalysts. Collection of Czechoslovak Chemical Communications, 2001, 66, 1257-1268.	1.0	19
85	Electrochemical recognition of charged species using quaternary ammonium binaphthyl salts. Analyst, The, 2001, 126, 1892-1896.	3.5	3
86	Molybdenum(0) and tungsten(0) catalysts with enhanced reactivity for allylic substitution: regioselectivity and solvent effects â€. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1234-1240.	1.3	25
87	Copper(II)-Mediated Oxidative Coupling of 2-Aminonaphthalene Homologues. Competition between the Straight Dimerization and the Formation of Carbazolesâ—Š. Journal of Organic Chemistry, 2001, 66, 1359-1365.	3.2	53
88	Asymmetric molybdenum(0)-catalyzed allylic substitution. Tetrahedron Letters, 2001, 42, 509-512.	1.4	54
89	Modular pyridine-type P , N -ligands derived from monoterpenes: application in asymmetric Heck addition. Tetrahedron Letters, 2001, 42, 3045-3048.	1.4	55
90	Molybdenum-Catalyzed Allylic Substitution in Glycals: A C-C Bond-Forming Ferrier-Type Reaction. Collection of Czechoslovak Chemical Communications, 2001, 66, 1735-1745.	1.0	11

#	Article	IF	CITATIONS
91	Diastereoisomeric Cationic π-Allylpalladium-(P,C)-MAP and MOP Complexes and Their Relationship to Stereochemical Memory Effects in Allylic Alkylation. Chemistry - A European Journal, 2000, 6, 4348-4357.	3.3	100
92	Synthesis of C2-Symmetrical [1,1'-Binaphthalene]-2,2'-diamines with Additional Chelating Groups Attached to the Nitrogen Atoms as Potential Ligands for Asymmetric Catalysis. Collection of Czechoslovak Chemical Communications, 2000, 65, 539-548.	1.0	3
93	PINDY:  A Novel, Pinene-Derived Bipyridine Ligand and Its Application in Asymmetric, Copper(I)-Catalyzed Allylic Oxidationâ€. Organic Letters, 2000, 2, 3047-3049.	4.6	117
94	Few molecules in asymmetric unit; why?. Acta Crystallographica Section A: Foundations and Advances, 2000, 56, s331-s331.	0.3	0
95	Molybdenum(II)-Catalyzed Allylation of Electron-Rich Aromatics and Heteroaromatics. Journal of Organic Chemistry, 1999, 64, 2751-2764.	3.2	134
96	Electrochemistry of quaternary ammonium binaphthyl salts. Chemical Communications, 1999, , 641-642.	4.1	2
97	New Lewis-Acidic Molybdenum(II) and Tungsten(II) Catalysts for Intramolecular Carbonyl Ene and Prins Reactions. Reversal of the Stereoselectivity of Cyclization of Citronellal. Journal of Organic Chemistry, 1999, 64, 2765-2775.	3.2	68
98	Palladium(II) Complexes of 2-Dimethylamino-2â€~- diphenylphosphino-1,1â€~-binaphthyl (MAP) with Unique P,Cσ-Coordination and Their Catalytic Activity in Allylic Substitution, Hartwigâ^'Buchwald Amination, and Suzuki Coupling. Journal of the American Chemical Society, 1999, 121, 7714-7715.	13.7	174
99	An Approach toward the Triquinane-Type Skeleton via Reagent-Controlled Skeletal Rearrangements. A Facile Method for Protectionâ [°] Deprotection of Organomercurials, Tuning the Selectivity of Wagnerâ [°] Meerwein Migrations, and a New Route to Annulated Lactones. Journal of Organic Chemistry, 1999. 64. 101-119.	3.2	46
100	Molybdenum(IV) Complexes as Efficient, Lewis Acidic Catalysts for Allylic Substitution. Formation of Câ^'C and Câ^'N Bonds. Journal of Organic Chemistry, 1999, 64, 5308-5311.	3.2	65
101	Molybdenum(II)- and Tungsten(II)-Catalyzed Allylic Substitution. Journal of Organic Chemistry, 1999, 64, 2737-2750.	3.2	57
102	Transition metal catalysis in organic synthesis: reflections, chirality and new vistas. Pure and Applied Chemistry, 1999, 71, 1425-1433.	1.9	42
103	A Facile Synthesis of the Enantiopure, Nitrogen-Substituted 2,2'-Diamino-1,1'-binaphthyls as Potential Ligands for Catalytic Asymmetric Reactions. Collection of Czechoslovak Chemical Communications, 1998, 63, 515-519.	1.0	11
104	Synthesis of N-Alkylated and N-Arylated Derivatives of 2-Amino-2â€~-hydroxy-1,1â€~-binaphthyl (NOBIN) and 2,2â€~-Diamino-1,1â€~-binaphthyl and Their Application in the Enantioselective Addition of Diethylzinc to Aromatic Aldehydes. Journal of Organic Chemistry, 1998, 63, 7727-7737.	3.2	130
105	Synthesis of 2-amino-2′-diphenylphosphino-1,1′-binaphthyl (MAP) and its accelerating effect on the Pd(0)-catalyzed N-arylation. Tetrahedron Letters, 1998, 39, 9289-9292.	1.4	60
106	On the â€~Novel two-phase oxidative cross-coupling of the two-component molecular crystal of 2-naphthol and 2-naphthylamine'. Chemical Communications, 1998, , 585-586.	4.1	37
107	The Stereochemical Dichotomy in Palladium(0)- and Nickel(0)-Catalyzed Allylic Substitution. Journal of the American Chemical Society, 1998, 120, 6661-6672.	13.7	54
108	Derivatives of 2-Amino-2â€~-diphenylphosphino-1,1â€~-binaphthyl (MAP) and Their Application in Asymmetric Palladium(0)-Catalyzed Allylic Substitution. Journal of Organic Chemistry, 1998, 63, 7738-7748.	3.2	172

ΡΑνει ΚοӒονskÃ1/2

#	Article	IF	CITATIONS
109	Oxidation of Molybdenum(0) and Tungsten(0) Carbonyl Complexes with Silver Triflate. Organometallics, 1997, 16, 3690-3695.	2.3	12
110	Axially chiral 1,1′-binaphthyls with non-identical groups in 2,2′-positions. Synthesis of the enantiomerically pure 2-hydroxy-2′-thiol and substituted 2-amino-2′-thiols. Tetrahedron: Asymmetry, 1997, 8, 537-546.	1.8	30
111	Molybdenum(II)-catalyzed allylic substitution. Tetrahedron Letters, 1997, 38, 4895-4898.	1.4	17
112	Molybdenum(II)-catalyzed alkylation of electron-rich aromatics with allylic acetates. Tetrahedron Letters, 1997, 38, 4899-4902.	1.4	16
113	The SN2 Reaction in the Solid State. An Unusual, BAl2 Aminolysis of an Ester Group in Crystalline (±)-2-Amino-2â€~-hydroxy-3â€~-(methoxycarbonyl)- 1,1â€~-binaphthyl Elucidated by X-ray Diffraction and Isotopic Labeling. New Experimental Evidence for Linearity in SN2 Substitution. Journal of the American Chemical Society. 1996. 118. 487-488.	13.7	31
114	Ruthenium-Catalyzed Oppenauer-Type Oxidation of 3β-Hydroxy Steroids. A Highly Efficient Entry into the Steroidal Hormones with 4-En-3-one Functionality. Journal of Organic Chemistry, 1996, 61, 6587-6590.	3.2	73
115	A stereoselective synthesis of cis- and trans-fused lactones via the palladium(II)-catalyzed carbonylation of organomercurials. Tetrahedron Letters, 1996, 37, 1125-1128.	1.4	22
116	Selective reduction of the carbonyl group in organomercurials. A facile method for the protection-deprotection of the mercurio group and a new route to annulated lactones. Tetrahedron Letters, 1996, 37, 5585-5588.	1.4	15
117	Synthesis and Resolution of Racemic 2-Amino-2'-hydroxy-1,1'-binaphthyl. Collection of Czechoslovak Chemical Communications, 1996, 61, 1520-1524.	1.0	43
118	Allylic substitution catalyzed by a new molybdenum complex. Tetrahedron Letters, 1995, 36, 6351-6354.	1.4	25
119	Cupration of Organomercurials: A Mild Method for the Intramolecular Addition of Organometallics to Ester Groups. Journal of Organic Chemistry, 1995, 60, 1482-1483.	3.2	25
120	Stereochemistry of Molybdenum(0)-Catalyzed Allylic Substitution: The First Observation of a Syn-Syn Mechanism. Journal of the American Chemical Society, 1995, 117, 6130-6131.	13.7	66
121	Palladium(O)-catalyzed allylic substitution with allylic alkoxides as substrates. Tetrahedron, 1994, 50, 529-537.	1.9	50
122	Stereoelectronically Controlled, Thallium(III)-Mediated C-19 Degradation of 19-Hydroxy Steroids. An Expedient Route to Estrone and its Congeners via 19-Nor-10.betahydroxy Intermediates. Journal of Organic Chemistry, 1994, 59, 5439-5444.	3.2	27
123	Stereochemistry of epoxidation of allylic and homoallylic cyclohexene alcohols. Journal of the Chemical Society Perkin Transactions 1, 1994, , 1759-1763.	0.9	14
124	Selective Cross-Coupling of 2-Naphthol and 2-Naphthylamine Derivatives. A Facile Synthesis of 2,2',3-Trisubstituted and 2,2',3,3'-Tetrasubstituted 1,1'-Binaphthyls. Journal of Organic Chemistry, 1994, 59, 2156-2163.	3.2	146
125	Molybdenum(V)-Mediated Skeletal Rearrangement of an Organomercury Steroid. Stereoelectronic Control and Mechanism. Journal of Organic Chemistry, 1994, 59, 2246-2249.	3.2	4
126	Corner opening of cyclopropanes by mercury(II) and thallium(III) and transmetalation of the intermediate organomercurials. A novel, stereoselective approach to cyclobutanes and cyclopropanes. Journal of the American Chemical Society, 1994, 116, 186-197.	13.7	36

#	Article	IF	CITATIONS
127	Organic Reactivity Control by Means of Neighboring Groups and Organometallics. A Personal Account. Collection of Czechoslovak Chemical Communications, 1994, 59, 1-74.	1.0	6
128	Allylic alcohols as substrates for the palladium(0)-catalyzed allylic substitution. Tetrahedron Letters, 1993, 34, 179-182.	1.4	66
129	Synthesis of estrone via a thallium(III)-mediated fragmentation of a 19-hydroxy-androst-5-ene precursor. Tetrahedron Letters, 1993, 34, 6139-6140.	1.4	10
130	Synthesis of enantiomerically pure binaphthyl derivatives. Mechanism of the enantioselective, oxidative coupling of naphthols and designing a catalytic cycle. Journal of Organic Chemistry, 1993, 58, 4534-4538.	3.2	287
131	Intramolecular alkoxymercuration of olefins and stabilization of the resulting organomercurials. Organometallics, 1993, 12, 1969-1971.	2.3	13
132	Transmetallation with palladium(II) of an organomercurial arising from mercury(II)-mediated cyclopropane cleavage. Tuning of the palladium reactivity and a novel, intramolecular redox reaction. Journal of the Chemical Society Chemical Communications, 1992, , 1086-1087.	2.0	9
133	Synthesis of enantiomerically pure 2,2'-dihydroxy-1,1'-binaphthyl, 2,2'-diamino-1,1'-binaphthyl, and 2-amino-2'-hydroxy-1,1'-binaphthyl. Comparison of processes operating as diastereoselective crystallization and as second order asymmetric transformation. Journal of Organic Chemistry, 1992, 57, 107, 200	3.2	236
134	Regioselective ring opening of cyclopropane by mercury(II) and transmetalation of the intermediate organomercurial with lithium and copper reagents. A novel, stereoselective approach to cyclobutanes. Journal of Organic Chemistry, 1992, 57, 4565-4567.	3.2	20
135	Stereochemistry of the palladium-catalyzed allylic substitution: the syn-anti dichotomy in the formation of (İ€-allyl)palladium complexes and their equilibration. Tetrahedron, 1992, 48, 7229-7250.	1.9	76
136	Regioselective opening of a cyclopropane ring by mercury(II) and transmetalation of the product with molybdenum. A novel, stereoelectronically controlled, skeletal rearrangement ans Grob-type fragmentation of organomolybdenum intermediates. Tetrahedron Letters, 1992, 33, 5991-5994.	1.4	11
137	A Facile Synthesis of 2-Amino-2′-hydroxy-1,1′-binaphthyl and 2,2′-Diamino-1,1′-binaphthyl by Oxidative Coupling Using Copper(II) Chloride. Synlett, 1991, 1991, 231-232.	² 1.8	86
138	Revision of the structure of 3-methoxy-14α-hydroxy-D-homo-1,3,5-(10)-estratrien-17a-one. A simple 1H NMR method for the determination of configuration of hydroxy group in position 5 and/or 14 of the D-homo-steroid skeleton. Collection of Czechoslovak Chemical Communications, 1991, 56, 1512-1524.	1.0	3
139	A Facile Method for the Preparation of Primary Allylic Amines from the Oximes of α,β-Unsaturated Ketones. Synlett, 1990, 1990, 677-679.	1.8	11
140	Structural requirements for the thallium(III)-mediated cyclisation of unsaturated alcohols. A novel fragmentation reaction producing 19-norsteroids. Journal of the Chemical Society Chemical Communications, 1990, , 1026-1028.	2.0	14
141	Stereo- and regiocontrol of electrophilic additions to cyclohexene systems by neighboring groups. Competition of electronic and stereoelectronic effects and comparison of the reactivity of selected electrophiles. Journal of Organic Chemistry, 1990, 55, 5580-5589.	3.2	51
142	Corner attack on cyclopropane by thallium(III) ions. A highly stereospecific cleavage and skeletal rearrangement of 3.alpha.,5-cyclo-5.alphacholestan-6.alphaol. Journal of the American Chemical Society, 1990, 112, 6735-6737.	13.7	18
143	Steric control of epoxidation by carbamate and amide groups. Evidence for the carbonyl-directed epoxidation. Journal of Organic Chemistry, 1990, 55, 3236-3243.	3.2	85
144	Synthesis of strophanthidin. Tetrahedron Letters, 1989, 30, 4295-4298.	1.4	29

9

ΡΑVEL ΚΟΑ̈́ΟVSKù/2

#	Article	IF	CITATIONS
145	The first observation of syn-anti dichotomy in the formation of (.piallyl)palladium complexes. Journal of the American Chemical Society, 1989, 111, 4981-4982.	13.7	76
146	Steric control of epoxidation by allylic and homoallylic carbamate groups. Tetrahedron Letters, 1988, 29, 2475-2478.	1.4	26
147	A stereospecific, silver(I)-assisted solvolysis of cyclic halo ethers. Evidence for a push-pull mechanism involving neighboring group participation. Journal of Organic Chemistry, 1988, 53, 5816-5819.	3.2	13
148	Stereo- and regio-control of electrophilic additions to cyclohexene systems by neighbouring groups: participation of allylic and homoallylic ester groups in hypobromous acid addition to some 5-unsaturated cholestane derivatives. Journal of the Chemical Society Perkin Transactions 1, 1988, , 2297-2303.	0.9	8
149	Transition-metal catalysis in Michael addition of β-dicarbonyls: Tuning of the reaction conditions. Collection of Czechoslovak Chemical Communications, 1988, 53, 2667-2674.	1.0	13
150	Participation of ambident neighbouring groups in hypobromous acid addition to some steroidal olefins. Competition of electronic and stereoelectronic effects. Journal of the Chemical Society Perkin Transactions 1, 1987, , 1969-1974.	0.9	16
151	A stereospecific tandem Wagner-Meerwein rearrangement in the solvolysis of 19-mesyloxy steroids. Journal of Organic Chemistry, 1986, 51, 4888-4891.	3.2	12
152	On the deceptive behavior of tri-n-butyltin hydride: In the reduction of acetates of some bromohydrins. A stereospecific radical rearrangement. Tetrahedron Letters, 1986, 27, 1513-1516.	1.4	28
153	Transition-metal catalysis in michael addition of β-dicarbonyls : Tuning of the reaction conditions. Tetrahedron Letters, 1986, 27, 5015-5018.	1.4	39
154	Carbamates : A method of synthesis and some syntehtic applications. Tetrahedron Letters, 1986, 27, 5521-5524.	1.4	165
155	Synthesis of helminthogermacrene and \hat{l}^2 -elemene. Tetrahedron Letters, 1985, 26, 2171-2172.	1.4	38
156	Synthesis of some allylic acetoxy derivatives in the steroid series. Collection of Czechoslovak Chemical Communications, 1985, 50, 1227-1238.	1.0	7
157	A method for the palladium-catalyzed allylic oxidation of olefins. Tetrahedron Letters, 1984, 25, 4187-4190.	1.4	97
158	Mechanism and structural effects in bromolactonization. Tetrahedron, 1983, 39, 3621-3636.	1.9	7
159	Deuterium and tritium labeling with the zinc-sodium iodide method. Journal of Organic Chemistry, 1983, 48, 2233-2237.	3.2	14
160	Electrophilic additions to 10β-vinyl cholestane derivatives. Collection of Czechoslovak Chemical Communications, 1983, 48, 2994-3019.	1.0	2
161	Synthesis of some 2,3- and 5,6-unsaturated 19-homosteroids bearing an oxygen containing group at the position 19a. Collection of Czechoslovak Chemical Communications, 1983, 48, 3589-3596.	1.0	1
162	Synthesis of some unsaturated 19a-homocholestane derivatives. Collection of Czechoslovak Chemical Communications, 1983, 48, 3597-3605.	1.0	4

ΡΑVEL ΚΟΑ̈́ΟVSKù/2

#	Article	IF	CITATIONS
163	Competition of 5(O)n and 6(O)n participation by 19a-substituent in hypobromous acid addition to 2,3- and 5,6-unsaturated 19-homocholestane derivatives. Collection of Czechoslovak Chemical Communications, 1983, 48, 3606-3617.	1.0	2
164	Neighboring group participation in electrophilic additions: The role of Markovnikov and Fürst-Plattner rule in hypobromous acid addition to 5,6-unsaturated cholestane derivatives. Collection of Czechoslovak Chemical Communications, 1983, 48, 3618-3628.	1.0	3
165	Acetoxyl group as control element in electrophilic addition: Participation by acetoxy group and its competition with other participating groups in hypobromous acid addition to some 5-cholestene derivatives. Collection of Czechoslovak Chemical Communications, 1983, 48, 3629-3642.	1.0	2
166	Competition of two participating groups in hypobromous acid addition to some 4-cholestene derivatives. Collection of Czechoslovak Chemical Communications, 1983, 48, 3643-3659.	1.0	2
167	Participation by some oxygen containing groups in hypobromous acid addition to double bond. Collection of Czechoslovak Chemical Communications, 1983, 48, 3660-3673.	1.0	3
168	Mechanism of hypobromous acid addition to unsaturated steroids. Competition between neighboring group participation and external nucleophile attack. Collection of Czechoslovak Chemical Communications, 1982, 47, 117-123.	1.0	1
169	Synthesis of some isocardenolide analogs and 17β-maleimidoandrostane of westphalen structural type. Collection of Czechoslovak Chemical Communications, 1982, 47, 96-107.	1.0	3
170	Synthesis of some westphalen-type cardenolide analogs. Collection of Czechoslovak Chemical Communications, 1982, 47, 108-116.	1.0	8
171	Mechanism of acid cleavage of some steroid epoxides. Competition between neighboring group participation and external nucleophile attack. Collection of Czechoslovak Chemical Communications, 1982, 47, 124-129.	1.0	1
172	Neighboring group participation in hypobromous acid addition to 19-substituted 5α-cholest-1-enes and in acid cleavage of their epoxy analogs. Collection of Czechoslovak Chemical Communications, 1982, 47, 3062-3076.	1.0	4
173	Neighboring group participation and rearrangement in hypobromous acid addition to 10Î ² -vinyl-cholestanes. Tetrahedron Letters, 1981, 22, 2699-2702.	1.4	9
174	A modified route to intermediates in partial syntheses of digitoxigenin and xysmalogenin. Collection of Czechoslovak Chemical Communications, 1981, 46, 446-451.	1.0	7
175	Neighboring group participation and rearrangement in hypobromous acid addition to 10β-vinyl cholestane derivatives. Collection of Czechoslovak Chemical Communications, 1981, 46, 2877-2891.	1.0	4
176	An unusual rearrangement in hypobromous acid addition to 10β-vinyl cholestane derivatives. Collection of Czechoslovak Chemical Communications, 1981, 46, 2892-2897.	1.0	3
177	Synthesis of 19-nor-10β-vinyl-5α-cholestane and its 5β-epimer. Collection of Czechoslovak Chemical Communications, 1981, 46, 2898-2905.	1.0	1
178	Synthesis of 14-deoxy-14α-strophanthidin. Tetrahedron Letters, 1980, 21, 555-558.	1.4	7
179	Participation of 19-substituents in acid cleavage of steroidal 5α,6α-epoxides. Collection of Czechoslovak Chemical Communications, 1980, 45, 3190-3198.	1.0	3
180	Participation of 19-substituents in acid cleavage of steroidal 3î±,4î±- and 4î±,5î±-epoxides. Collection of Czechoslovak Chemical Communications, 1980, 45, 3199-3209.	1.0	2

ΡΑνει ΚοΆονsκÃ1/2

#	Article	IF	CITATIONS
181	Synthesis of 3,4-, 4,5- and 5,6-unsaturated 19-substituted cholestane derivatives and related epoxides. Collection of Czechoslovak Chemical Communications, 1980, 45, 3008-3022.	1.0	7
182	Steroids with modified ring A or B: Screening for potential antiandrogenic and synandrogenic activity. The Journal of Steroid Biochemistry, 1980, 13, 455-460.	1.1	9
183	The synthesis and mass spectra of some oxygen-bridged 5α-cholestane and B-homo-5α-cholestane derivatives. Collection of Czechoslovak Chemical Communications, 1980, 45, 274-293.	1.0	2
184	Participation of 19-substituents in electrophilic additions to 6,7-unsaturated 5α-cholestane and B-homo 5α-cholestane derivatives; A case of competition between the participation of an ambident neighboring group and external nucleophile attack. Collection of Czechoslovak Chemical Communications, 1980, 45, 559-583.	1.0	3
185	Synthesis of 14-deoxy-14α-strophanthidol. Collection of Czechoslovak Chemical Communications, 1980, 45, 921-926.	1.0	2
186	Synthesis of 14-deoxy-14α-strophanthidin. Collection of Czechoslovak Chemical Communications, 1980, 45, 2998-3007.	1.0	3
187	Participation of 19-substituents in electrophilic additions. influence of 3β-substitution on hypobromous acid addition to 5,6-unsaturated steroids. Collection of Czechoslovak Chemical Communications, 1980, 45, 3023-3029.	1.0	4
188	Participation of 19-substituents in hypobromous acid addition to 3,4- and 4,5-unsaturated steroids. Collection of Czechoslovak Chemical Communications, 1980, 45, 3030-3038.	1.0	4
189	Participation of 19-ester groups in hypobromous acid additions to 2,3- and 5,6-unsaturated steroids. Collection of Czechoslovak Chemical Communications, 1979, 44, 1483-1495.	1.0	8
190	Reduction of some mesyloxy and tosyloxy steroids with sodium iodide and zinc dust. Collection of Czechoslovak Chemical Communications, 1979, 44, 246-250.	1.0	19
191	Participation of the methoxyl group in the cleavage of some 19-substituted steroid epoxides. A case of competition between internal and external nucleophile attack. Collection of Czechoslovak Chemical Communications, 1979, 44, 226-233.	1.0	4
192	Westphalen rearrangement. Mechanism of formation of 5α-acetoxy derivatives. Collection of Czechoslovak Chemical Communications, 1979, 44, 234-245.	1.0	11
193	Mass spectra of some 5-methyl-19-nor-5β-cholest-9-enes. Collection of Czechoslovak Chemical Communications, 1979, 44, 429-438.	1.0	2
194	Participation of 19-ester groups in the cleavage of 2α,3α- and 5α,6α-steroid epoxides. A case of competition between participation and external nucleophile attack. Collection of Czechoslovak Chemical Communications, 1979, 44, 1496-1509.	1.0	8
195	Model experiments in the synthetic approach to strophanthidin: The synthesis of 3β,5-dihydroxy-5β-cholestan-19-al. Collection of Czechoslovak Chemical Communications, 1979, 44, 2156-2160.	1.0	2
196	Synthesis of 6l²,19-dimethoxy-3l̂±,5-cyclo-5l̂±-pregnan-20-one. Collection of Czechoslovak Chemical Communications, 1979, 44, 2275-2283.	1.0	4
197	Neighboring group participation in some electrophilic additions to 19-substituted 5î±-cholest-2-enes and 5-cholestenes. Collection of Czechoslovak Chemical Communications, 1978, 43, 327-335.	1.0	6
198	Hydroxylation of 6β-methoxy-3α,5-cyclo-5α-androstan-17-one with Rhizopus nigricans. Collection of Czechoslovak Chemical Communications, 1978, 43, 2305-2311.	1.0	6

#	Article	IF	CITATIONS
199	Participation of the methoxyl group in electrophilic additions to some unsaturated 19-methoxy steroids. Collection of Czechoslovak Chemical Communications, 1978, 43, 1924-1932.	1.0	6
200	Preparation of some 6β-substituted 5-hydroxy-5α-cholest-2-enes. Collection of Czechoslovak Chemical Communications, 1978, 43, 1933-1941.	1.0	4
201	Other Reactions of Allylpalladium and Related Derivatives: Rearrangements of Allylpalladium and Related Derivatives. , 0, , 2011-2025.		0
202	Addition Reactions: Polar Addition. , 0, , 419-452.		0
203	Chiral Lewis Bases as Catalysts. , 0, , 255-286.		18
204	Electrophilic Additions to Double Bonds. , 0, , 1135-1222.		4
205	Addition Reactions: Polar Addition. Organic Reaction Mechanisms, 0, , 377-416.	0.0	0
206	Addition Reactions: Polar Addition. Organic Reaction Mechanisms, 0, , 397-441.	0.0	0
207	Addition Reactions: Polar Addition. Organic Reaction Mechanisms, 0, , 345-393.	0.0	0
208	Addition Reactions: Polar Addition. Organic Reaction Mechanisms, 0, , 283-331.	0.0	0
209	Addition Reactions: Polar Addition. Organic Reaction Mechanisms, 0, , 357-391.	0.0	0