Kohji Ohno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3263323/publications.pdf Version: 2024-02-01

128 papers	7,847 citations	66234 42 h-index	51492 86 g-index
131	131	131	5915
all docs	docs citations	times ranked	citing authors

Кони Онмо

#	Article	IF	CITATIONS
1	Facile synthesis of epoxide-co-propylene sulphide polymers with compositional and architectural control. Polymer Chemistry, 2022, 13, 2803-2812.	1.9	4
2	Interfacial Compatibilization in Ternary Polymer Nanocomposites: Comparing Theory and Experiments. Macromolecules, 2021, 54, 797-811.	2.2	14
3	Concentrated-Polymer-Brush-Modified Silica Nanoparticles Self-Assembled in Ionic Liquid Containing Iodide/Triiodide (l–/I3–)-Redox System as Quasi-Solid Electrolytes for Dye-Sensitized Solar Cells. ACS Applied Nano Materials, 2021, 4, 6620-6628.	2.4	5
4	Grafted Nanoparticle Surface Wetting during Phase Separation in Polymer Nanocomposite Films. ACS Applied Materials & Interfaces, 2021, 13, 37628-37637.	4.0	12
5	Improving tribological properties of oil-based lubricants using hybrid colloidal additives. Tribology International, 2020, 144, 106130.	3.0	30
6	Controlled Synthesis of Concentrated Polymer Brushes with Ultralarge Thickness by Surface-Initiated Atom Transfer Radical Polymerization under High Pressure. Macromolecules, 2020, 53, 132-137.	2.2	17
7	Structural Color Materials Using Polymer-Brush-Decorated Hybrid Particles. ACS Applied Polymer Materials, 2020, 2, 368-375.	2.0	13
8	Convenient Synthesis of Very-Thick Concentrated Polymer Brushes by Atom Transfer Radical Polymerization in an Ionic Liquid. Macromolecules, 2020, 53, 7936-7943.	2.2	5
9	Aluminum-Based Initiators from Thiols for Epoxide Polymerizations. Macromolecules, 2020, 53, 8181-8191.	2.2	8
10	Structure and dynamics in suspensions of soft core-shell colloids in the fluid regime. Journal of Chemical Physics, 2019, 151, 024901.	1.2	4
11	Polymer-Brush-Decorated Graphene Oxide: Precision Synthesis and Liquid-Crystal Formation. Langmuir, 2019, 35, 10900-10909.	1.6	15
12	Phase Behavior of Grafted Polymer Nanocomposites from Field-Based Simulations. Macromolecules, 2019, 52, 5110-5121.	2.2	22
13	Controlling the Thermally Induced Phase Separation of Polymer/Ionic Liquid Blended Films with Concentrated-Polymer-Brush-Decorated Hybrid Particles. Langmuir, 2019, 35, 14566-14575.	1.6	5
14	Control of Phase Separation in Polystyrene/Ionic Liquid-Blended Films by Polymer Brush-Grafted Particles. Langmuir, 2019, 35, 3733-3747.	1.6	9
15	Bioinactive semi-interpenetrating network gel layers: zwitterionic polymer chains incorporated in a cross-linked polymer brush. Journal of Materials Chemistry B, 2019, 7, 4280-4291.	2.9	7
16	Polymer-brush-decorated colloidal platelets: precision synthesis and self-assembly. Polymer Chemistry, 2019, 10, 2686-2696.	1.9	5
17	Grafting of Polymer Brushes from Xanthateâ€Functionalized Silica Particles. Chemistry - A European Journal, 2019, 25, 2059-2068	1.7	5
18	Unusual photoresponses in the upper critical solution temperature of polymer solutions mediated by changes in intermolecular interactions in an azo-doped liquid crystalline solvent. Physical Chemistry Chemical Physics, 2018, 20, 5850-5855.	1.3	1

#	Article	IF	CITATIONS
19	A novel approach for UV-patterning with binary polymer brushes. Colloids and Surfaces B: Biointerfaces, 2018, 161, 42-50.	2.5	11
20	USAXS analysis of concentration-dependent self-assembling of polymer-brush-modified nanoparticles in ionic liquid: [I] concentrated-brush regime. Journal of Chemical Physics, 2018, 148, 124902.	1.2	12
21	Magnetically Responsive Assemblies of Polymer-Brush-Decorated Nanoparticle Clusters That Exhibit Structural Color. Langmuir, 2018, 34, 9532-9539.	1.6	13
22	Measuring the Interactions between Protein-Coated Microspheres and Polymer Brushes in Aqueous Solutions. Langmuir, 2018, 34, 8798-8806.	1.6	9
23	Grafted polymer chains suppress nanoparticle diffusion in athermal polymer melts. Journal of Chemical Physics, 2017, 146, 203332.	1.2	36
24	UVâ€Patterning of Antiâ€Biofouling Zwitterionic Copolymer Layer with an Aromatic Anchor Group. Macromolecular Materials and Engineering, 2017, 302, 1600374.	1.7	2
25	Semisoft Colloidal Crystals in Ionic Liquids. Langmuir, 2017, 33, 7130-7136.	1.6	14
26	Polymer-brush-afforded SPIO Nanoparticles Show a Unique Biodistribution and MR Imaging Contrast in Mouse Organs. Magnetic Resonance in Medical Sciences, 2017, 16, 275-283.	1.1	12
27	Gradation of proteins and cells attached to the surface of bio-inert zwitterionic polymer brush. Colloids and Surfaces B: Biointerfaces, 2016, 144, 180-187.	2.5	17
28	Surface-initiated SET living radical polymerisation for the synthesis of silica–polymer core–shell nanoparticles. Polymer Chemistry, 2016, 7, 6075-6083.	1.9	16
29	Well-Defined Polymer-Brush-Coated Rod-Shaped Particles: Synthesis and Formation of Liquid Crystals. Macromolecules, 2016, 49, 8430-8439.	2.2	17
30	Three Gel States of Colloidal Composites Consisting of Polymer-Brush-Afforded Silica Particles and a Nematic Liquid Crystal with Distinct Viscoelastic and Optical Properties. ACS Applied Materials & Interfaces, 2016, 8, 29649-29657.	4.0	6
31	Dispersion of PMMA-grafted, mesoscopic iron-oxide rods in polymer films. Soft Matter, 2016, 12, 2550-2556.	1.2	10
32	Development of Novel Nano-systems for Electrochemical Devices by Hierarchizing Concentrated Polymer Brushes. , 2016, , 195-215.		0
33	Synthesis of Iron Oxide Rods Coated with Polymer Brushes and Control of Their Assembly in Thin Films. Langmuir, 2015, 31, 1172-1179.	1.6	11
34	Dual Self-Healing Abilities of Composite Gels Consisting of Polymer-Brush-Afforded Particles and an Azobenzene-Doped Liquid Crystal. ACS Applied Materials & Interfaces, 2015, 7, 4185-4191.	4.0	24
35	Selective Patterning of Gold Surfaces by Core/Shell, Semisoft Hybrid Nanoparticles. Small, 2015, 11, 482-488.	5.2	6
36	Well-defined colloidal crystal films from the 2D self-assembly of core–shell semi-soft nanoparticles. Polymer Chemistry, 2015, 6, 7297-7307.	1.9	8

#	Article	IF	CITATIONS
37	Silica core–polystyrene shell nanoparticle synthesis and assembly in three dimensions. Nanoscale, 2015, 7, 19036-19046.	2.8	16
38	Transparent and high permittivity films of poly(methyl methacrylate)-grafted 7Ânm barium titanate particles prepared by surface-initiated atom transfer radical polymerization. Polymer, 2015, 81, 23-28.	1.8	9
39	Temperature-responsive copolymer brush constructed on a silica microparticle by atom transfer radical polymerization. Colloid and Polymer Science, 2015, 293, 851-859.	1.0	9
40	Colloidal crystallization of spindle-shaped hematite particles coated with polymer brush in deionized aqueous suspension. Colloid and Polymer Science, 2014, 292, 723-731.	1.0	5
41	Drying dissipative structures of spindle-shaped hematite particles coated with polymer brush. Colloid and Polymer Science, 2014, 292, 1143-1151.	1.0	1
42	Macromolecular Diffusion through a Polymer Matrix with Polymer-Grafted Chained Nanoparticles. Macromolecules, 2014, 47, 5357-5364.	2.2	35
43	Immobilization of Semisoft Colloidal Crystals Formed by Polymer-Brush-Afforded Hybrid Particles. Langmuir, 2014, 30, 7304-7312.	1.6	30
44	From cartoon to real time MRI: in vivo monitoring of phagocyte migration in mouse brain. Scientific Reports, 2014, 4, 6997.	1.6	33
45	Monodisperse, Charge-Stabilized, Core–Shell Particles via Silica-Supported Reversible Addition–Fragmentation Chain Transfer Polymerization for Cell Imaging. Chemistry of Materials, 2013, 25, 3522-3527.	3.2	33
46	Synthesis of silica–polymer core–shell nanoparticles by reversible addition–fragmentation chain transfer polymerization. Chemical Communications, 2013, 49, 9077.	2.2	81
47	Fabrication of Contrast Agents for Magnetic Resonance Imaging from Polymer-Brush-Afforded Iron Oxide Magnetic Nanoparticles Prepared by Surface-Initiated Living Radical Polymerization. Biomacromolecules, 2013, 14, 3453-3462.	2.6	54
48	Surface-initiated living radical polymerization from silica particles functionalized with poly(ethylene) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
49	Direct Measurements of Polymer Brush Conformation Using Small-Angle Neutron Scattering (SANS) from Highly Grafted Iron Oxide Nanoparticles in Homopolymer Melts. Macromolecules, 2013, 46, 9341-9348.	2.2	66
50	The synthesis of well-defined poly(vinylbenzyl chloride)-grafted nanoparticles via RAFT polymerization. Beilstein Journal of Organic Chemistry, 2013, 9, 1226-1234.	1.3	28
51	Synthesis and Characterization of Polystyrene Brushes for Organic Thin Film Transistors. Journal of Nanoscience and Nanotechnology, 2012, 12, 4137-4141.	0.9	8
52	Polymer brush with pendent glucosylurea groups constructed on a glass substrate by RAFT polymerization. European Polymer Journal, 2012, 48, 1875-1882.	2.6	19
53	Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent viscosity. Polymer Chemistry, 2012, 3, 148-153.	1.9	40

⁵⁴Blood Clearance and Biodistribution of Polymer Brush-Afforded Silica Particles Prepared by Surface-Initiated Living Radical Polymerization. Biomacromolecules, 2012, 13, 927-936. 2.6 39

#	Article	IF	CITATIONS
55	Controlling the Location of Nanoparticles in Polymer Blends by Tuning the Length and End Group of Polymer Brushes. ACS Macro Letters, 2012, 1, 252-256.	2.3	78
56	Structure of water in the vicinity of a zwitterionic polymer brush as examined by sum frequency generation method. Colloids and Surfaces B: Biointerfaces, 2012, 100, 126-132.	2.5	27
57	Sum frequency generation study on the structure of water in the vicinity of an amphoteric polymer brush. Colloids and Surfaces B: Biointerfaces, 2012, 91, 215-218.	2.5	24
58	Carboxymethylbetaine copolymer layer covalently fixed to a glass substrate. Colloids and Surfaces B: Biointerfaces, 2012, 94, 107-113.	2.5	17
59	Lubrication Mechanism of Concentrated Polymer Brushes in Solvents: Effect of Solvent Quality and Thereby Swelling State. Macromolecules, 2011, 44, 5013-5019.	2.2	114
60	Transformation of Nano- to Mesosized Iron Oxide Cores to α-Fe within Organic Shells Preserved Intact. Chemistry of Materials, 2011, 23, 1564-1569.	3.2	29
61	A jamming morphology map of polymer blend nanocomposite films. Soft Matter, 2011, 7, 7262.	1.2	52
62	Surface-Initiated Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization from Fine Particles Functionalized with Trithiocarbonates. Macromolecules, 2011, 44, 8944-8953.	2.2	140
63	Anti-biofouling properties of an amphoteric polymer brush constructed on a glass substrate. Colloids and Surfaces B: Biointerfaces, 2011, 88, 455-462.	2.5	44
64	Controlled synthesis of hydrophilic concentrated polymer brushes and their friction/lubrication properties in aqueous solutions. Journal of Polymer Science Part A, 2011, 49, 5284-5292.	2.5	26
65	Image Printing on the Surface of Antiâ€Biofouling Zwitterionic Polymer Brushes by Ion Beam Irradiation. Macromolecular Bioscience, 2011, 11, 557-564.	2.1	27
66	Novel Solidâ€State Polymer Electrolyte of Colloidal Crystal Decorated with Ionicâ€Liquid Polymer Brush. Advanced Materials, 2011, 23, 4868-4872.	11.1	115
67	Silica particles coated with zwitterionic polymer brush: Formation of colloidal crystals and anti-biofouling properties in aqueous medium. Colloids and Surfaces B: Biointerfaces, 2011, 84, 111-116.	2.5	38
68	Materials Designing by High-Pressure Living Radical Polymerization. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2011, 21, 4-10.	0.1	0
69	Drying dissipative structures of colloidal crystals of silica spheres coated with polymer brushes of poly(carboxymethyl betaine). Colloid and Polymer Science, 2010, 288, 1233-1243.	1.0	2
70	Temperature-responsive polymer-brush constructed on a glass substrate by atom transfer radical polymerization. Journal of Colloid and Interface Science, 2010, 345, 325-331.	5.0	19
71	Molecular Recognition at the Exterior Surface of a Zwitterionic Telomer Brush. Langmuir, 2010, 26, 6767-6774.	1.6	65
72	A Versatile Method of Initiator Fixation for Surface-Initiated Living Radical Polymerization on Polymeric Substrates. Macromolecules, 2010, 43, 5569-5574.	2.2	37

#	Article	IF	CITATIONS
73	Colloidal crystals formed by polymer brush-afforded fine particles. Polymer Chemistry, 2010, 1, 1545.	1.9	16
74	Surface-Initiated Living Radical Polymerization from Narrowly Size-Distributed Silica Nanoparticles of Diameters Less Than 100 nm. Macromolecules, 2010, 43, 8805-8812.	2.2	90
75	Synthesis of monodisperse zinc sulfide particles grafted with concentrated polystyrene brush by surface-initiated nitroxide-mediated polymerization. European Polymer Journal, 2009, 45, 2788-2796.	2.6	42
76	Simultaneous Block Copolymer and Magnetic Nanoparticle Assembly in Nanocomposite Films. Macromolecules, 2009, 42, 1219-1228.	2.2	64
77	High-pressure atom transfer radical polymerization of methyl methacrylate for well-defined ultrahigh molecular-weight polymers. Polymer, 2008, 49, 2426-2429.	1.8	81
78	Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers. Polymer, 2008, 49, 3568-3577.	1.8	154
79	Structural Analysis of "Semisoft―Colloidal Crystals by Confocal Laser Scanning Microscopy. Macromolecules, 2008, 41, 3620-3626.	2.2	50
80	Internal Phase Separation Drives Dewetting in Polymer Blend and Nanocomposite Films. Macromolecules, 2007, 40, 384-388.	2.2	42
81	Suspensions of Silica Particles Grafted with Concentrated Polymer Brush:  Effects of Graft Chain Length on Brush Layer Thickness and Colloidal Crystallization. Macromolecules, 2007, 40, 9143-9150.	2.2	264
82	Monodisperse Silica Particles Grafted with Concentrated Oxetane-Carrying Polymer Brushes:Â Their Synthesis by Surface-Initiated Atom Transfer Radical Polymerization and Use for Fabrication of Hollow Spheres. Macromolecules, 2007, 40, 1159-1164.	2.2	101
83	Carboxybetaine Polymer-Protected Gold Nanoparticles: High Dispersion Stability and Resistance against Non-Specific Adsorption of Proteins. Macromolecular Chemistry and Physics, 2007, 208, 862-873.	1.1	71
84	Two-dimensional ordered arrays of monodisperse silica particles grafted with concentrated polymer brushes. European Polymer Journal, 2007, 43, 243-248.	2.6	38
85	Structure and Properties of High-Density Polymer Brushes Prepared by Surface-Initiated Living Radical Polymerization. Advances in Polymer Science, 2006, , 1-45.	0.4	551
86	Suspensions of Silica Particles Grafted with Concentrated Polymer Brush:Â A New Family of Colloidal Crystals. Macromolecules, 2006, 39, 1245-1249.	2.2	162
87	Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate). Macromolecules, 2005, 38, 1264-1270.	2.2	132
88	Self-Regulated Structures in Nanocomposites by Directed Nanoparticle Assembly. Nano Letters, 2005, 5, 1878-1882.	4.5	149
89	Synthesis of Monodisperse Silica Particles Coated with Well-Defined, High-Density Polymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules, 2005, 38, 2137-2142.	2.2	528
90	Some aspects of nitroxide-mediated living radical polymerization of N-(p-vinylbenzyl)phthalimide. European Polymer Journal, 2004, 40, 81-88.	2.6	21

#	Article	IF	CITATIONS
91	Accumulation of phenyl boronic acid-carrying telomers on a gold surface. Journal of Colloid and Interface Science, 2004, 273, 106-114.	5.0	14
92	Synthesis of well-defined polymers with protected silanol groups by atom transfer radical polymerization and their use for the fabrication of polymeric nanoparticles. European Polymer Journal, 2004, 40, 2665-2670.	2.6	7
93	Living Radical Polymerization by Polyhedral Oligomeric Silsesquioxane-Holding Initiators:  Precision Synthesis of Tadpole-Shaped Organic/Inorganic Hybrid Polymers. Macromolecules, 2004, 37, 8517-8522.	2.2	99
94	Fabrication of Ordered Arrays of Gold Nanoparticles Coated with High-Density Polymer Brushes. Angewandte Chemie, 2003, 115, 2857-2860.	1.6	16
95	Fabrication of Ordered Arrays of Gold Nanoparticles Coated with High-Density Polymer Brushes. Angewandte Chemie - International Edition, 2003, 42, 2751-2754.	7.2	185
96	Precision Synthesis of Organic/Inorganic Hybrid Nanocapsules with a Silanol-Functionalized Micelle Template. Angewandte Chemie - International Edition, 2003, 42, 4194-4197.	7.2	52
97	Synthesis of functional polymers by living radical polymerisation. Journal of Materials Chemistry, 2003, 13, 2689-2695.	6.7	43
98	Synthesis of Gold Nanoparticles Coated with Well-Defined, High-Density Polymer Brushes by Surface-Initiated Living Radical Polymerization. Macromolecules, 2002, 35, 8989-8993.	2.2	286
99	Architecture-driven thermodynamic interactions in blends of star-branched and linear poly(methyl) Tj ETQq1 1	0.784314 r 2.4	gBT /Overloci
100	Synthesis of well-defined cyclodextrin-core star polymers. Journal of Polymer Science Part A, 2001, 39, 2206-2214.	2.5	149
101	Synthesis of well-defined cyclodextrin-core star polymers. , 2001, 39, 2206.		3
102	Mechanisms and kinetics of living radical polymerizations. Macromolecular Rapid Communications, 2000, 21, 151-165.	2.0	152
103	Water-Soluble and Water Dispersible Polymers by Living Radical Polymerisation. ACS Symposium Series, 2000, , 148-161.	0.5	2
104	Well-Defined Oligosaccharide-Terminated Polymers from Living Radical Polymerization. Biomacromolecules, 2000, 1, 152-156.	2.6	116
105	Controlled Grafting of a Well-Defined Glycopolymer on a Solid Surface by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules, 2000, 33, 2870-2874.	2.2	253
106	Synthesis of a well-defined anthracene-labelled polystyrene by atomtransfer radical polymerization. Polymer, 1999, 40, 759-763.	1.8	33
107	Nitroxide-controlled free radical polymerization of a sugar-carrying acryloyl monomer. Macromolecular Chemistry and Physics, 1999, 200, 1619-1625.	1.1	81
108	Atom Transfer Radical Polymerization of Poly(vinyl ether) Macromonomers. Macromolecules, 1999, 32, 290-293.	2.2	141

#	Article	lF	CITATIONS
109	Recognition of Novel Amphiphiles with Many Pendent Mannose Residues by Con Aâ€. Bioconjugate Chemistry, 1999, 10, 354-360.	1.8	26
110	Molecular Specification of Homopolymer of Vinylbenzyl-Lactose-Amide in Aqueous Solution. Polymer Journal, 1999, 31, 590-594.	1.3	10
111	Synthesis of a well-defined glycopolymer by atom transfer radical polymerization. Journal of Polymer Science Part A, 1998, 36, 2473-2481.	2.5	176
112	Nitroxide-controlled free radical polymerization ofp-tert-butoxystyrene. Kinetics and applications. Macromolecular Chemistry and Physics, 1998, 199, 291-297.	1.1	3
113	Free radical polymerization of a sugar residue-carrying styryl monomer with a lipophilic alkoxyamine initiator: synthesis of a well-defined novel glycolipid. Macromolecular Chemistry and Physics, 1998, 199, 2193-2197.	1.1	64
114	Controlled Graft Polymerization of Methyl Methacrylate on Silicon Substrate by the Combined Use of the Langmuirâ 'Blodgett and Atom Transfer Radical Polymerization Techniques. Macromolecules, 1998, 31, 5934-5936.	2.2	551
115	Catalytic Properties of Galactose Oxidase to Liposome-Forming Amphiphiles Which Have Many Pendent Galactose Residues. Bioconjugate Chemistry, 1998, 9, 847-847.	1.8	1
116	Kinetic Study on the Activation Process in an Atom Transfer Radical Polymerization. Macromolecules, 1998, 31, 2699-2701.	2.2	122
117	Catalytic Properties of Galactose Oxidase to Liposome-Forming Amphiphiles Which Have Many Pendent Galactose Residuesâ€. Bioconjugate Chemistry, 1998, 9, 548-554.	1.8	12
118	Interfacial Recognition of Sugars by Novel Boronic Acid-Carrying Amphiphiles Prepared with a Lipophilic Radical Initiator. Langmuir, 1998, 14, 165-170.	1.6	35
119	Mechanism and Kinetics of Iodide-Mediated Polymerization of Styrene. Macromolecules, 1998, 31, 2809-2814.	2.2	138
120	Synthesis of a Well-Defined Glycopolymer by Nitroxide-Controlled Free Radical Polymerization. Macromolecules, 1998, 31, 1064-1069.	2.2	191
121	Mechanism and Kinetics of Nitroxide-Controlled Free-Radical Polymerization. ACS Symposium Series, 1998, , 180-199.	0.5	13
122	Nitroxide-controlled free radical polymerization of p-tert-butoxystyrene. Kinetics and applications. Macromolecular Chemistry and Physics, 1998, 199, 291-297.	1.1	15
123	Mechanism and Kinetics of Nitroxide-Controlled Free Radical Polymerization. Thermal Decomposition of 2,2,6,6-Tetramethyl-1-polystyroxypiperidines. Macromolecules, 1997, 30, 2503-2506.	2.2	95
124	Mechanisms and Kinetics of Nitroxide-Controlled Free Radical Polymerization. Macromolecules, 1996, 29, 6393-6398.	2.2	302
125	Galactose-Containing Amphiphiles Prepared with a Lipophilic Radical Initiator: Association Processes between Liposomes Triggered by Enzymic Reaction. Bioconjugate Chemistry, 1995, 6, 361-366.	1.8	19
126	Sugar-Containing Lipids Prepared by Using a Lipophilic Radical Initiator: Interfacial Recognition by Lectin As Studied by Using the Multiple Internal Reflection Fluorescence Method. Langmuir, 1994, 10, 4131-4135.	1.6	34

#	Article	lF	CITATIONS
127	Spin trapping of a free radical intermediate formed during microsomal metabolism of hydrazine. Biochemical and Biophysical Research Communications, 1985, 133, 1086-1091.	1.0	37
128	Hepatotoxicity of hydrazine in isolated rat hepatocytes Chemical and Pharmaceutical Bulletin, 1984, 32, 795-796.	0.6	10