Jonathan Gershenzon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3263243/publications.pdf

Version: 2024-02-01

432 papers

44,945 citations

106 h-index ²⁸⁸³ 190 g-index

449 all docs 449 docs citations

449 times ranked 27123 citing authors

#	Article	IF	CITATIONS
1	Biosynthesis and antifungal activity of fungus-induced $\langle i \rangle O \langle i \rangle$ -methylated flavonoids in maize. Plant Physiology, 2022, 188, 167-190.	2.3	32
2	Plants protect themselves from herbivores by optimizing the distribution of chemical defenses. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	17
3	Evolution of DIMBOA-Glc O-Methyltransferases from Flavonoid O-Methyltransferases in the Grasses. Molecules, 2022, 27, 1007.	1.7	2
4	Effect of Drought and Methyl Jasmonate Treatment on Primary and Secondary Isoprenoid Metabolites Derived from the MEP Pathway in the White Spruce Picea glauca. International Journal of Molecular Sciences, 2022, 23, 3838.	1.8	4
5	Origin and early evolution of the plant terpene synthase family. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2100361119.	3.3	48
6	Lack of antagonism between salicylic acid and jasmonate signalling pathways in poplar. New Phytologist, 2022, 235, 701-717.	3.5	32
7	CRISPR/Cas9 disruption of <i>UGT71L1</i> in poplar connects salicinoid and salicylic acid metabolism and alters growth and morphology. Plant Cell, 2022, 34, 2925-2947.	3.1	8
8	Bark Beetle Attack History Does Not Influence the Induction of Terpene and Phenolic Defenses in Mature Norway Spruce (Picea abies) Trees by the Bark Beetle-Associated Fungus Endoconidiophora polonica. Frontiers in Plant Science, 2022, 13, .	1.7	4
9	Specialist root herbivore modulates plant transcriptome and downregulates defensive secondary metabolites in a brassicaceous plant. New Phytologist, 2022, 235, 2378-2392.	3.5	2
10	Alternative transcript splicing regulates UDP-glucosyltransferase-catalyzed detoxification of DIMBOA in the fall armyworm (Spodoptera frugiperda). Scientific Reports, 2022, 12, .	1.6	4
11	Differential effects of the rhizobacterium Pseudomonas simiae on above―and belowground chewing insect herbivores. Journal of Applied Entomology, 2021, 145, 250-260.	0.8	7
12	Differential localization of flavonoid glucosides in an aquatic plant implicates different functions under abiotic stress. Plant, Cell and Environment, 2021, 44, 900-914.	2.8	22
13	Effect of forest stand type on host plant quality and direct and indirect effects on pine sawfly performance. Agricultural and Forest Entomology, 2021, 23, 163-172.	0.7	1
14	<i>Sclerotinia sclerotiorum</i> Infection Triggers Changes in Primary and Secondary Metabolism in <i>Arabidopsis thaliana</i> Phytopathology, 2021, 111, 559-569.	1.1	15
15	The Sesquiterpene Synthase PtTPS5 Produces (1S,5S,7R,10R)-Guaia-4(15)-en-11-ol and (1S,7R,10R)-Guaia-4-en-11-ol in Oomycete-Infected Poplar Roots. Molecules, 2021, 26, 555.	1.7	11
16	Poplar MYB117 promotes anthocyanin synthesis and enhances flavonoid B-ring hydroxylation by up-regulating the flavonoid 3′,5′-hydroxylase gene. Journal of Experimental Botany, 2021, 72, 3864-3880.	2.4	23
17	A peroxisomal \hat{l}^2 -oxidative pathway contributes to the formation of C6â \in "C1 aromatic volatiles in poplar. Plant Physiology, 2021, 186, 891-909.	2.3	12
18	Negative regulation of plastidial isoprenoid pathway by herbivore-induced \hat{l}^2 -cyclocitral in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30

#	Article	IF	Citations
19	Vulnerability and responses to bark beetle and associated fungal symbiont attacks in conifers. Tree Physiology, 2021, 41, 1103-1108.	1.4	3
20	Poplar protease inhibitor expression differs in an herbivore specific manner. BMC Plant Biology, 2021, 21, 170.	1.6	5
21	So Much for Glucosinolates: A Generalist Does Survive and Develop on Brassicas, but at What Cost?. Plants, 2021, 10, 962.	1.6	13
22	Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci. Scientific Reports, 2021, 11, 13244.	1.6	17
23	Ecological factors influence balancing selection on leaf chemical profiles of a wildflower. Nature Ecology and Evolution, 2021, 5, 1135-1144.	3.4	14
24	Identification of a Sulfatase that Detoxifies Glucosinolates in the Phloem-Feeding Insect Bemisia tabaci and Prefers Indolic Glucosinolates. Frontiers in Plant Science, 2021, 12, 671286.	1.7	10
25	Volatile emission and biosynthesis in endophytic fungi colonizing black poplar leaves. Beilstein Journal of Organic Chemistry, 2021, 17, 1698-1711.	1.3	3
26	Storage of carbon reserves in spruce trees is prioritized over growth in the face of carbon limitation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	45
27	A Cryptic Plant Terpene Cyclase Producing Unconventional 18―and 14â€Membered Macrocyclic C ₂₅ and C ₂₀ Terpenoids with Immunosuppressive Activity. Angewandte Chemie - International Edition, 2021, 60, 25468-25476.	7.2	14
28	A Cryptic Plant Terpene Cyclase Producing Unconventional 18―and 14â€Membered Macrocyclic C ₂₅ and C ₂₀ Terpenoids with Immunosuppressive Activity. Angewandte Chemie, 2021, 133, 25672-25680.	1.6	0
29	The selective sequestration of glucosinolates by the cabbage aphid severely impacts a predatory lacewing. Journal of Pest Science, 2021, 94, 1147-1160.	1.9	8
30	A beta-glucosidase of an insect herbivore determines both toxicity and deterrence of a dandelion defense metabolite. ELife, $2021,10,10$	2.8	8
31	The biosynthesis of thymol, carvacrol, and thymohydroquinone in Lamiaceae proceeds via cytochrome P450s and a short-chain dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	44
32	Plant glucosinolate content increases susceptibility to diamondback moth (Lepidoptera: Plutellidae) regardless of its diet. Journal of Pest Science, 2020, 93, 491-506.	1.9	16
33	Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytologist, 2020, 225, 26-36.	3.5	144
34	Foliar herbivory by caterpillars and aphids differentially affects phytohormonal signalling in roots and plant defence to a root herbivore. Plant, Cell and Environment, 2020, 43, 775-786.	2.8	31
35	Improving Phenolic Total Content and Monoterpene in Mentha x piperita by Using Salicylic Acid or Methyl Jasmonate Combined with Rhizobacteria Inoculation. International Journal of Molecular Sciences, 2020, 21, 50.	1.8	59
36	Glucosylation prevents plant defense activation in phloem-feeding insects. Nature Chemical Biology, 2020, 16, 1420-1426.	3.9	30

#	Article	lF	CITATIONS
37	Effect of Drought on the Methylerythritol 4-Phosphate (MEP) Pathway in the Isoprene Emitting Conifer Picea glauca. Frontiers in Plant Science, 2020, 11, 546295.	1.7	27
38	The reconstruction and biochemical characterization of ancestral genes furnish insights into the evolution of terpene synthase function in the Poaceae. Plant Molecular Biology, 2020, 104, 203-215.	2.0	11
39	Detoxification of plant defensive glucosinolates by an herbivorous caterpillar is beneficial to its endoparasitic wasp. Molecular Ecology, 2020, 29, 4014-4031.	2.0	19
40	The nesting preference of an invasive ant is associated with the cues produced by actinobacteria in soil. PLoS Pathogens, 2020, 16, e1008800.	2.1	24
41	Evolution of isoprenyl diphosphate synthase-like terpene synthases in fungi. Scientific Reports, 2020, 10, 14944.	1.6	14
42	Simultaneous Real-Time Measurement of Isoprene and 2-Methyl-3-Buten-2-ol Emissions From Trees Using SIFT-MS. Frontiers in Plant Science, 2020, 11, 578204.	1.7	7
43	The Fall Armyworm Spodoptera frugiperda Utilizes Specific UDP-Glycosyltransferases to Inactivate Maize Defensive Benzoxazinoids. Frontiers in Physiology, 2020, 11, 604754.	1.3	29
44	The phytopathogenic fungus Sclerotinia sclerotiorum detoxifies plant glucosinolate hydrolysis products via an isothiocyanate hydrolase. Nature Communications, 2020, 11, 3090.	5.8	65
45	The Product Specificities of Maize Terpene Synthases TPS4 and TPS10 Are Determined Both by Active Site Amino Acids and Residues Adjacent to the Active Site. Plants, 2020, 9, 552.	1.6	8
46	A light-dependent molecular link between competition cues and defence responses in plants. Nature Plants, 2020, 6, 223-230.	4.7	92
47	Variable dependency on associated yeast communities influences host range in <i>Drosophila</i> species. Oikos, 2020, 129, 964-982.	1.2	18
48	Canditate metabolites for ash dieback tolerance in Fraxinus excelsior. Journal of Experimental Botany, 2020, 71, 6074-6083.	2.4	13
49	Analysis of the isoprenoid pathway intermediates, dimethylallyl diphosphate and isopentenyl diphosphate, from crude plant extracts by liquid chromatography tandem mass spectrometry. Phytochemical Analysis, 2020, 31, 770-777.	1.2	4
50	The Occurrence of Sulfated Salicinoids in Poplar and Their Formation by Sulfotransferase 1. Plant Physiology, 2020, 183, 137-151.	2.3	12
51	Production of constitutive and induced secondary metabolites is coordinated with growth and storage in Norway spruce saplings. Tree Physiology, 2020, 40, 928-942.	1.4	18
52	Herbivory meets fungivory: insect herbivores feed on plant pathogenic fungi for their own benefit. Ecology Letters, 2020, 23, 1073-1084.	3.0	23
53	Spruce Phenolics: Biosynthesis and Ecological Functions. Compendium of Plant Genomes, 2020, , 193-214.	0.3	4
54	Fungal associates of the tree-killing bark beetle, Ips typographus, vary in virulence, ability to degrade conifer phenolics and influence bark beetle tunneling behavior. Fungal Ecology, 2019, 38, 71-79.	0.7	89

#	Article	IF	CITATIONS
55	Terpene Synthase Genes Originated from Bacteria through Horizontal Gene Transfer Contribute to Terpenoid Diversity in Fungi. Scientific Reports, 2019, 9, 9223.	1.6	31
56	Identification and Characterization of trans-Isopentenyl Diphosphate Synthases Involved in Herbivory-Induced Volatile Terpene Formation in Populus trichocarpa. Molecules, 2019, 24, 2408.	1.7	12
57	Phenylacetaldehyde synthase 2 does not contribute to the constitutive formation of 2-phenylethyl-Î ² -D-glucopyranoside in poplar. Plant Signaling and Behavior, 2019, 14, 1668233.	1.2	2
58	Chemical convergence between plants and insects: biosynthetic origins and functions of common secondary metabolites. New Phytologist, 2019, 223, 52-67.	3.5	90
59	Herbivore-induced volatile emission from old-growth black poplar trees under field conditions. Scientific Reports, 2019, 9, 7714.	1.6	21
60	Strigolactones enhance rootâ€knot nematode (<i>Meloidogyne graminicola</i>) infection in rice by antagonizing the jasmonate pathway. New Phytologist, 2019, 224, 454-465.	3.5	47
61	Roles of plant volatiles in defence against microbial pathogens and microbial exploitation of volatiles. Plant, Cell and Environment, 2019, 42, 2827-2843.	2.8	162
62	<i>Sclerotinia sclerotiorum</i> Circumvents Flavonoid Defenses by Catabolizing Flavonol Glycosides and Aglycones. Plant Physiology, 2019, 180, 1975-1987.	2.3	42
63	Induction of essential oil production in Mentha x piperita by plant growth promoting bacteria was correlated with an increase in jasmonate and salicylate levels and a higher density of glandular trichomes. Plant Physiology and Biochemistry, 2019, 141, 142-153.	2.8	54
64	Molecular Basis of the Evolution of Methylthioalkylmalate Synthase and the Diversity of Methionine-Derived Glucosinolates. Plant Cell, 2019, 31, 1633-1647.	3.1	37
65	Low genetic variation is associated with low mutation rate in the giant duckweed. Nature Communications, 2019, 10, 1243.	5.8	65
66	Heterotic patterns of primary and secondary metabolites in the oilseed crop Brassica juncea. Heredity, 2019, 123, 318-336.	1.2	22
67	The use of Leaf Surface Contact Cues During Oviposition Explains Field Preferences in the Willow Sawfly Nematus oligospilus. Scientific Reports, 2019, 9, 4946.	1.6	15
68	Separate Pathways Contribute to the Herbivore-Induced Formation of 2-Phenylethanol in Poplar. Plant Physiology, 2019, 180, 767-782.	2.3	22
69	Flavanone-3-Hydroxylase Plays an Important Role in the Biosynthesis of Spruce Phenolic Defenses Against Bark Beetles and Their Fungal Associates. Frontiers in Plant Science, 2019, 10, 208.	1.7	54
70	Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (<i>lps) Tj ETQq0 0 0 rgl</i>	BT /Qverlo	ock_10 Tf 50 1
71	Specificity of Herbivore Defense Responses in a Woody Plant, Black Poplar (Populus nigra). Journal of Chemical Ecology, 2019, 45, 162-177.	0.9	25
72	Plant volatile emission depends on the species composition of the neighboring plant community. BMC Plant Biology, 2019, 19, 58.	1.6	75

#	Article	IF	CITATIONS
73	The plastidial metabolite 2â€ <i>C</i> Aê€methylâ€ <i>D</i> Palastidial metabolite 2â€ <i>C</i> Palastidial metabolite 2â€ <i>C</i> Palastidial metabolite 2â€ <i>C</i> Palastidial metabolite 2â€ <i>C</i> Palastidial metabolite 2â€ <i>Palastidial metabolite 2â€<i>Palastidial metabolite 2â€</i>Palastidial metabolite 2â€<td>e_{2.8}</td><td>15</td></i></i></i></i></i></i></i></i></i></i>	e _{2.8}	15
74	Untargeted Metabolomics Approach Reveals Differences in Host Plant Chemistry Before and After Infestation With Different Pea Aphid Host Races. Frontiers in Plant Science, 2019, 10, 188.	1.7	50
75	Tritrophic metabolism of plant chemical defenses and its effects on herbivore and predator performance. ELife, 2019, 8, .	2.8	35
76	Traitâ€mediated indirect interactions: Moose browsing increases sawfly fecundity through plantâ€induced responses. Ecology and Evolution, 2019, 9, 10615-10629.	0.8	7
77	Accumulation of Catechin and Proanthocyanidins in Black Poplar Stems After Infection by Plectosphaerella populi: Hormonal Regulation, Biosynthesis and Antifungal Activity. Frontiers in Plant Science, 2019, 10, 1441.	1.7	32
78	Salicylic acid activates poplar defense against the biotrophic rust fungus ⟨i⟩Melampsora lariciâ€populina⟨/i⟩ via increased biosynthesis of catechin and proanthocyanidins. New Phytologist, 2019, 221, 960-975.	3.5	103
79	Terpene Biosynthesis in Red Algae Is Catalyzed by Microbial Type But Not Typical Plant Terpene Synthases. Plant Physiology, 2019, 179, 382-390.	2.3	40
80	Eyes on the future – evidence for tradeâ€offs between growth, storage and defense in Norway spruce. New Phytologist, 2019, 222, 144-158.	3.5	88
81	A terpene synthase-cytochrome P450 cluster in Dictyostelium discoideum produces a novel trisnorsesquiterpene. ELife, 2019, 8, .	2.8	11
82	Inferring Roles in Defense from Metabolic Allocation of Rice Diterpenoids. Plant Cell, 2018, 30, 1119-1131.	3.1	55
83	Gallocatechin biosynthesis via a flavonoid 3′,5′-hydroxylase is a defense response in Norway spruce against infection by the bark beetle-associated sap-staining fungus Endoconidiophora polonica. Phytochemistry, 2018, 148, 78-86.	1.4	28
84	Caterpillars induce jasmonates in flowers and alter plant responses to a second attacker. New Phytologist, 2018, 217, 1279-1291.	3.5	25
85	Leaf rust infection reduces herbivoreâ€induced volatile emission in black poplar and attracts a generalist herbivore. New Phytologist, 2018, 220, 760-772.	3.5	52
86	Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and ecoâ€evolutionary implications. New Phytologist, 2018, 220, 739-749.	3.5	101
87	MTPSLs: New Terpene Synthases in Nonseed Plants. Trends in Plant Science, 2018, 23, 121-128.	4.3	48
88	The occurrence and formation of monoterpenes in herbivore-damaged poplar roots. Scientific Reports, 2018, 8, 17936.	1.6	31
89	Rust Infection of Black Poplar Trees Reduces Photosynthesis but Does Not Affect Isoprene Biosynthesis or Emission. Frontiers in Plant Science, 2018, 9, 1733.	1.7	11
90	Convergent evolution of a metabolic switch between aphid and caterpillar resistance in cereals. Science Advances, 2018, 4, eaat6797.	4.7	58

#	Article	IF	Citations
91	Plant Defensive \hat{I}^2 -Glucosidases Resist Digestion and Sustain Activity in the Gut of a Lepidopteran Herbivore. Frontiers in Plant Science, 2018, 9, 1389.	1.7	29
92	Diversity and Functional Evolution of Terpene Synthases in Dictyostelid Social Amoebae. Scientific Reports, 2018, 8, 14361.	1.6	11
93	Ant-like Traits in Wingless Parasitoids Repel Attack from Wolf Spiders. Journal of Chemical Ecology, 2018, 44, 894-904.	0.9	5
94	The nitrilase PtNIT1 catabolizes herbivore-induced nitriles in Populus trichocarpa. BMC Plant Biology, 2018, 18, 251.	1.6	13
95	New Perspectives on CO ₂ , Temperature, and Light Effects on BVOC Emissions Using Online Measurements by PTR-MS and Cavity Ring-Down Spectroscopy. Environmental Science & Emp; Technology, 2018, 52, 13811-13823.	4.6	31
96	Dealing with food shortage: larval dispersal behaviour and survival on nonâ€prey food of the hoverfly <i>Episyrphus balteatus</i> . Ecological Entomology, 2018, 43, 578-590.	1.1	7
97	Two R2R3â€∢scp>MYB proteins are broad repressors of flavonoid and phenylpropanoid metabolism in poplar. Plant Journal, 2018, 96, 949-965.	2.8	137
98	Barley yellow dwarf virus Infection Leads to Higher Chemical Defense Signals and Lower Electrophysiological Reactions in Susceptible Compared to Tolerant Barley Genotypes. Frontiers in Plant Science, 2018, 9, 145.	1.7	17
99	Alternaria Brassicae Induces Systemic Jasmonate Responses in Arabidopsis Which Travel to Neighboring Plants via a Piriformsopora Indica Hyphal Network and Activate Abscisic Acid Responses. Frontiers in Plant Science, 2018, 9, 626.	1.7	26
100	Verticillium dahliae-Arabidopsis Interaction Causes Changes in Gene Expression Profiles and Jasmonate Levels on Different Time Scales. Frontiers in Microbiology, 2018, 9, 217.	1.5	70
101	Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica) Tj ETQq1 1 0.784314	4 rgBT /Ov	erlock 10 Tf
102	Plant iron acquisition strategy exploited by an insect herbivore. Science, 2018, 361, 694-697.	6.0	98
103	Terpenoid Biosynthesis: The Basic Pathway and Formation of Monoterpenes, Sesquiterpenes, and Diterpenes., 2018,, 339-388.		22
104	Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites. ELife, 2018, 7, .	2.8	44
105	Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Molecular Ecology, 2017, 26, 4099-4110.	2.0	143
106	A Generalist Herbivore Copes with Specialized Plant Defence: the Effects of Induction and Feeding by Helicoverpa armigera (Lepidoptera: Noctuidae) Larvae on Intact Arabidopsis thaliana (Brassicales) Plants. Journal of Chemical Ecology, 2017, 43, 608-616.	0.9	17
107	Poplar MYB115 and MYB134 Transcription Factors Regulate Proanthocyanidin Synthesis and Structure. Plant Physiology, 2017, 174, 154-171.	2.3	122
108	Intraspecific chemical diversity among neighbouring plants correlates positively with plant size and herbivore load but negatively with herbivore damage. Ecology Letters, 2017, 20, 87-97.	3.0	50

#	Article	IF	CITATIONS
109	Flavan-3-ols Are an Effective Chemical Defense against Rust Infection. Plant Physiology, 2017, 175, 1560-1578.	2.3	156
110	CYP79 P450 monooxygenases in gymnosperms: CYP79A118 is associated with the formation of taxiphyllin in Taxus baccata. Plant Molecular Biology, 2017, 95, 169-180.	2.0	31
111	Releasing plant volatiles, as simple as ABC. Science, 2017, 356, 1334-1335.	6.0	7
112	How Glucosinolates Affect Generalist Lepidopteran Larvae: Growth, Development and Glucosinolate Metabolism. Frontiers in Plant Science, 2017, 8, 1995.	1.7	93
113	Four terpene synthases contribute to the generation of chemotypes in tea tree (Melaleuca) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf
114	Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. ELife, 2017, 6, .	2.8	68
115	Benzoxazinoids: Reactivity and Modes of Action of a Versatile Class of Plant Chemical Defenses. Journal of the Brazilian Chemical Society, 2016, , .	0.6	15
116	Insect Detoxification of Glucosinolates and Their Hydrolysis Products. Advances in Botanical Research, 2016, 80, 199-245.	0.5	65
117	Optimization of Engineered Production of the Glucoraphanin Precursor Dihomomethionine in Nicotiana benthamiana. Frontiers in Bioengineering and Biotechnology, 2016, 4, 14.	2.0	47
118	A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack. PLoS Biology, 2016, 14, e1002332.	2.6	71
119	Modulation of Legume Defense Signaling Pathways by Native and Non-native Pea Aphid Clones. Frontiers in Plant Science, 2016, 07, 1872.	1.7	26
120	Catechol dioxygenases catalyzing the first step in Norway spruce phenolic degradation are key virulence factors in the bark beetle-vectored fungus Endoconidiophora polonica. Plant Physiology, 2016, 171, pp.01916.2015.	2.3	75
121	The gut microbiota of the pine weevil is similar across Europe and resembles that of other coniferâ€feeding beetles. Molecular Ecology, 2016, 25, 4014-4031.	2.0	75
122	Differential induction of plant chemical defenses by parasitized and unparasitized herbivores: consequences for reciprocal, multitrophic interactions. Oikos, 2016, 125, 1398-1407.	1.2	34
123	Hoverfly preference for high honeydew amounts creates enemyâ€free space for aphids colonizing novel host plants. Journal of Animal Ecology, 2016, 85, 1286-1297.	1.3	7
124	Feeding Experience Affects the Behavioral Response of Polyphagous Gypsy Moth Caterpillars to Herbivore-induced Poplar Volatiles. Journal of Chemical Ecology, 2016, 42, 382-393.	0.9	42
125	Novel family of terpene synthases evolved from <i>trans</i> -isoprenyl diphosphate synthases in a flea beetle. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2922-2927.	3.3	72
126	A Geranylfarnesyl Diphosphate Synthase Provides the Precursor for Sesterterpenoid (C ₂₅) Formation in the Glandular Trichomes of the Mint Species <i>Leucosceptrum canum</i>). Plant Cell, 2016, 28, 804-822.	3.1	48

#	Article	IF	CITATIONS
127	Quantifying the Metabolites of the Methylerythritol 4-Phosphate (MEP) Pathway in Plants and Bacteria by Liquid Chromatography–Triple Quadrupole Mass Spectrometry. Methods in Enzymology, 2016, 576, 225-249.	0.4	18
128	Characterization of Biosynthetic Pathways for the Production of the Volatile Homoterpenes DMNT and TMTT in <i>Zea mays</i> . Plant Cell, 2016, 28, 2651-2665.	3.1	105
129	Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12328-12333.	3.3	70
130	Terpene synthase genes in eukaryotes beyond plants and fungi: Occurrence in social amoebae. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12132-12137.	3.3	92
131	Metabolism of poplar salicinoids by the generalist herbivore Lymantria dispar (Lepidoptera). Insect Biochemistry and Molecular Biology, 2016, 78, 39-49.	1.2	25
132	Different alleles of a gene encoding leucoanthocyanidin reductase (PaLAR3) influence resistance against the fungus Heterobasidion parviporum in Picea abies. Plant Physiology, 2016, 171, pp.00685.2016.	2.3	34
133	Jasmonic Acid and Ethylene Signaling Pathways Regulate Glucosinolate Levels in Plants During Rhizobacteria-Induced Systemic Resistance Against a Leaf-Chewing Herbivore. Journal of Chemical Ecology, 2016, 42, 1212-1225.	0.9	118
134	Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. Phytochemistry Reviews, 2016, 15, 1127-1151.	3.1	175
135	Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and their Potential in Bark Beetle Control. Journal of Chemical Ecology, 2016, 42, 952-969.	0.9	61
136	CYP79D enzymes contribute to jasmonic acid-induced formation of aldoximes and other nitrogenous volatiles in two Erythroxylum species. BMC Plant Biology, 2016, 16, 215.	1.6	27
137	Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell, 2016, 28, tpc.00065.2016.	3.1	87
138	Microbes matter: herbivore gut endosymbionts play a role in breakdown of host plant toxins. Environmental Microbiology, 2016, 18, 1306-1307.	1.8	7
139	Elm defence against herbivores and pathogens: morphological, chemical and molecular regulation aspects. Phytochemistry Reviews, 2016, 15, 961-983.	3.1	27
140	Enemy-free space promotes maintenance of host races in an aphid species. Oecologia, 2016, 181, 659-672.	0.9	11
141	A below-ground herbivore shapes root defensive chemistry in natural plant populations. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160285.	1.2	26
142	A mode of action of glucosinolate-derived isothiocyanates: Detoxification depletes glutathione and cysteine levels with ramifications on protein metabolism in Spodoptera littoralis. Insect Biochemistry and Molecular Biology, 2016, 71, 37-48.	1.2	77
143	Glucosinolate Desulfation by the Phloem-Feeding Insect Bemisia tabaci. Journal of Chemical Ecology, 2016, 42, 230-235.	0.9	42
144	<i>Arabidopsis thaliana</i> isoprenyl diphosphate synthases produce the C ₂₅ intermediate geranylfarnesyl diphosphate. Plant Journal, 2015, 84, 847-859.	2.8	46

#	Article	IF	Citations
145	Belowground herbivore tolerance involves delayed overcompensatory root regrowth in maize. Entomologia Experimentalis Et Applicata, 2015, 157, 113-120.	0.7	15
146	Temperature affects insect outbreak risk through tritrophic interactions mediated by plant secondary compounds. Ecosphere, 2015, 6, 1-17.	1.0	15
147	One amino acid makes the difference: the formation of ent-kaurene and 16α-hydroxy-ent-kaurane by diterpene synthases in poplar. BMC Plant Biology, 2015, 15, 262.	1.6	30
148	Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus <i>Piriformospora indica</i> on <i>Arabidopsis thaliana</i> roots. New Phytologist, 2015, 208, 873-886.	3.5	52
149	The diversion of 2â€ <i>C</i> àêmethylâ€ <scp>d</scp> â€erythritolâ€2,4â€cyclodiphosphate from the 2â€ <i>C</i> â€methylâ€ <scp>d</scp> â€erythritol 4â€phosphate pathway to hemiterpene glycosides mediates stress responses in <i>Arabidopsis thaliana</i> . Plant Journal, 2015, 82, 122-137.	2.8	48
150	Light and Nutrient Dependent Responses in Secondary Metabolites of Plantago lanceolata Offspring Are Due to Phenotypic Plasticity in Experimental Grasslands. PLoS ONE, 2015, 10, e0136073.	1.1	29
151	Substrate geometry controls the cyclization cascade in multiproduct terpene synthases from Zea mays. Organic and Biomolecular Chemistry, 2015, 13, 6021-6030.	1.5	5
152	Restoring (E)- \hat{l}^2 -Caryophyllene Production in a Non-producing Maize Line Compromises its Resistance against the Fungus Colletotrichum graminicola. Journal of Chemical Ecology, 2015, 41, 213-223.	0.9	22
153	A physiological and behavioral mechanism for leaf-herbivore induced systemic root resistance. Plant Physiology, 2015, 169, pp.00759.2015.	2.3	44
154	Fungal Planet description sheets: 320–370. Persoonia: Molecular Phylogeny and Evolution of Fungi, 2015, 34, 167-266.	1.6	193
155	Feeding on Leaves of the Glucosinolate Transporter Mutant gtr1gtr2 Reduces Fitness of Myzus persicae. Journal of Chemical Ecology, 2015, 41, 975-984.	0.9	32
156	Quantification of plant surface metabolites by matrixâ€assisted laser desorption–ionization mass spectrometry imaging: glucosinolates on <i><scp>A</scp>rabidopsis thaliana</i> leaves. Plant Journal, 2015, 81, 961-972.	2.8	68
157	Isotope sensitive branching and kinetic isotope effects to analyse multiproduct terpenoid synthases from Zea mays. Chemical Communications, 2015, 51, 3797-3800.	2.2	13
158	Induced Jasmonate Signaling Leads to Contrasting Effects on Root Damage and Herbivore Performance. Plant Physiology, 2015, 167, 1100-1116.	2.3	104
159	The Last Step in Cocaine Biosynthesis Is Catalyzed by a BAHD Acyltransferase. Plant Physiology, 2015, 167, 89-101.	2.3	51
160	Defensive weapons and defense signals in plants: Some metabolites serve both roles. BioEssays, 2015, 37, 167-174.	1.2	104
161	Plant defences against ants provide a pathway to social parasitism in butterflies. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151111.	1.2	28
162	The flowering of a new scent pathway in rose. Science, 2015, 349, 28-29.	6.0	18

#	Article	IF	Citations
163	Beetle feeding induces a different volatile emission pattern from black poplar foliage than caterpillar herbivory. Plant Signaling and Behavior, 2015, 10, e987522.	1.2	12
164	The cytosolic branched-chain aminotransferases of Arabidopsis thaliana influence methionine supply, salvage and glucosinolate metabolism. Plant Molecular Biology, 2015, 88, 119-131.	2.0	29
165	Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.). Phytochemistry, 2015, 115, 89-98.	1.4	65
166	The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation. BMC Plant Biology, 2015, 15, 128.	1.6	49
167	Metabolism of Glucosinolates and Their Hydrolysis Products in Insect Herbivores. , 2015, , 163-194.		11
168	Influence of medium and elicitors on the production of cocaine, amino acids and phytohormones by Erythroxylum coca calli. Plant Cell, Tissue and Organ Culture, 2015, 120, 1061-1075.	1.2	18
169	The Sesquiterpenes(E)-ß-Farnesene and (E)-α-Bergamotene Quench Ozone but Fail to Protect the Wild Tobacco Nicotiana attenuata from Ozone, UVB, and Drought Stresses. PLoS ONE, 2015, 10, e0127296.	1.1	44
170	The Small Subunit 1 of the Arabidopsis Isopropylmalate Isomerase Is Required for Normal Growth and Development and the Early Stages of Glucosinolate Formation. PLoS ONE, 2014, 9, e91071.	1.1	25
171	Insect Attraction versus Plant Defense: Young Leaves High in Glucosinolates Stimulate Oviposition by a Specialist Herbivore despite Poor Larval Survival due to High Saponin Content. PLoS ONE, 2014, 9, e95766.	1.1	72
172	Insect attraction to herbivore-induced beech volatiles under different forest management regimes. Oecologia, 2014, 176, 569-580.	0.9	17
173	Positive Darwinian selection is a driving force for the diversification of terpenoid biosynthesis in the genus Oryza. BMC Plant Biology, 2014, 14, 239.	1.6	33
174	Flavan-3-ols in Norway Spruce: Biosynthesis, Accumulation, and Function in Response to Attack by the Bark Beetle-Associated Fungus <i>Ceratocystis polonica</i> Â Â Â Â. Plant Physiology, 2014, 164, 2107-2122.	2.3	72
175	Metabolic Flux Analysis of Plastidic Isoprenoid Biosynthesis in Poplar Leaves Emitting and Nonemitting Isoprene Â. Plant Physiology, 2014, 165, 37-51.	2.3	124
176	Overexpression of an Isoprenyl Diphosphate Synthase in Spruce Leads to Unexpected Terpene Diversion Products That Function in Plant Defense Â. Plant Physiology, 2014, 164, 555-569.	2.3	45
177	Reglucosylation of the Benzoxazinoid DIMBOA with Inversion of Stereochemical Configuration is a Detoxification Strategy in Lepidopteran Herbivores. Angewandte Chemie - International Edition, 2014, 53, 11320-11324.	7.2	87
178	Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa). BMC Plant Biology, 2014, 14, 270.	1.6	86
179	The timing of herbivore-induced volatile emission in black poplar (Populus nigra) and the influence of herbivore age and identity affect the value of individual volatiles as cues for herbivore enemies. BMC Plant Biology, 2014, 14, 304.	1,6	42
180	Jasmonic Acid and Its Precursor 12-Oxophytodienoic Acid Control Different Aspects of Constitutive and Induced Herbivore Defenses in Tomato. Plant Physiology, 2014, 166, 396-410.	2.3	125

#	Article	IF	Citations
181	Using plant chemistry and insect preference to study the potential of Barbarea (Brassicaceae) as a dead-end trap crop for diamondback moth (Lepidoptera: Plutellidae). Phytochemistry, 2014, 98, 137-144.	1.4	38
182	Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings. Phytochemistry, 2014, 98, 110-119.	1.4	82
183	Transgenic upregulation of the condensed tannin pathway in poplar leads to a dramatic shift in leaf palatability for two tree-feeding Lepidoptera. Journal of Chemical Ecology, 2014, 40, 150-158.	0.9	39
184	An optimal defense strategy for phenolic glycoside production in <i>Populus trichocarpa</i> – isotope labeling demonstrates secondary metabolite production in growing leaves. New Phytologist, 2014, 203, 607-619.	3.5	39
185	$3-\hat{l}^2$ -d-Glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1,4-benzoxazin-3-ones. Phytochemistry, 2014, 102, 97-105.	1.4	77
186	Smelling the tree and the forest: elm background odours affect egg parasitoid orientation to herbivore induced terpenoids. BioControl, 2014, 59, 29-43.	0.9	19
187	Ectopic Terpene Synthase Expression Enhances Sesquiterpene Emission in Nicotiana attenuata without Altering Defense or Development of Transgenic Plants or Neighbors. Plant Physiology, 2014, 166, 779-797.	2.3	30
188	Induced carbon reallocation and compensatory growth as root herbivore tolerance mechanisms. Plant, Cell and Environment, 2014, 37, 2613-2622.	2.8	60
189	<i>Phyllotreta striolata</i> flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7349-7354.	3.3	116
190	An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress. BMC Plant Biology, 2014, 14, 162.	1.6	42
191	Specific Polyphenols and Tannins are Associated with Defense Against Insect Herbivores in the Tropical Oak Quercus oleoides. Journal of Chemical Ecology, 2014, 40, 458-467.	0.9	50
192	Evolution in an Ancient Detoxification Pathway Is Coupled with a Transition to Herbivory in the Drosophilidae. Molecular Biology and Evolution, 2014, 31, 2441-2456.	3.5	100
193	Deoxyxylulose 5-Phosphate Synthase Controls Flux through the Methylerythritol 4-Phosphate Pathway in Arabidopsis. Plant Physiology, 2014, 165, 1488-1504.	2.3	154
194	Peroxisomal ATP-Binding Cassette Transporter COMATOSE and the Multifunctional Protein ABNORMAL INFLORESCENCE MERISTEM Are Required for the Production of Benzoylated Metabolites in Arabidopsis Seeds. Plant Physiology, 2014, 164, 48-54.	2.3	59
195	The role of glucosinolates and the jasmonic acid pathway in resistance of <i>Arabidopsis thaliana</i> against molluscan herbivores. Molecular Ecology, 2014, 23, 1188-1203.	2.0	95
196	Little peaks with big effects: establishing the role of minor plant volatiles in plant–insect interactions. Plant, Cell and Environment, 2014, 37, 1836-1844.	2.8	112
197	Herbivoreâ€induced volatile emission in black poplar: regulation and role in attracting herbivore enemies. Plant, Cell and Environment, 2014, 37, 1909-1923.	2.8	120
198	Herbivoreâ€induced poplar cytochrome P450 enzymes of the <scp>CYP</scp> 71 family convert aldoximes to nitriles which repel a generalist caterpillar. Plant Journal, 2014, 80, 1095-1107.	2.8	105

#	Article	IF	CITATIONS
199	Plants Suppress Their Emission of Volatiles When Growing with Conspecifics. Journal of Chemical Ecology, 2013, 39, 537-545.	0.9	42
200	Localization of sesquiterpene formation and emission in maize leaves after herbivore damage. BMC Plant Biology, 2013, 13, 15.	1.6	43
201	Interaction of glucosinolate content of Arabidopsis thaliana mutant lines and feeding and oviposition by generalist and specialist lepidopterans. Phytochemistry, 2013, 86, 36-43.	1.4	40
202	Gypsy Moth Caterpillar Feeding has Only a Marginal Impact on Phenolic Compounds in Old-Growth Black Poplar. Journal of Chemical Ecology, 2013, 39, 1301-1312.	0.9	31
203	An oxidoreductase from â€~Alphonso' mango catalyzing biosynthesis of furaneol and reduction of reactive carbonyls. SpringerPlus, 2013, 2, 494.	1.2	12
204	Theoretical and Experimental Analysis of the Reaction Mechanism of MrTPS2, a Triquinaneâ€Forming Sesquiterpene Synthase from Chamomile. Chemistry - A European Journal, 2013, 19, 13590-13600.	1.7	30
205	Characterization of three novel isoprenyl diphosphate synthases from the terpenoid rich mango fruit. Plant Physiology and Biochemistry, 2013, 71, 121-131.	2.8	20
206	Metal ions control product specificity of isoprenyl diphosphate synthases in the insect terpenoid pathway. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4194-4199.	3.3	62
207	Peltate Glandular Trichomes of <i>Colquhounia coccinea</i> var. <i>mollis</i> Harbor a New Class of Defensive Sesterterpenoids. Organic Letters, 2013, 15, 1694-1697.	2.4	53
208	Multiple effects of temperature, photoperiod and food quality on the performance of a pine sawfly. Ecological Entomology, 2013, 38, 201-208.	1.1	23
209	Learning from nature: new approaches to the metabolic engineering of plant defense pathways. Current Opinion in Biotechnology, 2013, 24, 320-328.	3.3	43
210	The biosynthesis of hydroxycinnamoyl quinate esters and their role in the storage of cocaine in Erythroxylum coca. Phytochemistry, 2013, 91, 177-186.	1.4	19
211	Arabidopsis thaliana Plants with Different Levels of Aliphatic- and Indolyl-Glucosinolates Affect Host Selection and Performance of Bemisia tabaci. Journal of Chemical Ecology, 2013, 39, 1361-1372.	0.9	26
212	Two Herbivore-Induced Cytochrome P450 Enzymes CYP79D6 and CYP79D7 Catalyze the Formation of Volatile Aldoximes Involved in Poplar Defense A. Plant Cell, 2013, 25, 4737-4754.	3.1	104
213	Egg Laying of Cabbage White Butterfly (Pieris brassicae) on Arabidopsis thaliana Affects Subsequent Performance of the Larvae. PLoS ONE, 2013, 8, e59661.	1.1	55
214	Four genes encoding MYB28, a major transcriptional regulator of the aliphatic glucosinolate pathway, are differentially expressed in the allopolyploid Brassica juncea. Journal of Experimental Botany, 2013, 64, 4907-4921.	2.4	65
215	Natural Variation in Maize Aphid Resistance Is Associated with 2,4-Dihydroxy-7-Methoxy-1,4-Benzoxazin-3-One Glucoside Methyltransferase Activity Â. Plant Cell, 2013, 25, 2341-2355.	3.1	251
216	Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in <i>Arabidopsis</i> Flowers Â. Plant Cell, 2013, 25, 4640-4657.	3.1	104

#	Article	IF	CITATIONS
217	A Common Fungal Associate of the Spruce Bark Beetle Metabolizes the Stilbene Defenses of Norway Spruce \hat{A} \hat{A} . Plant Physiology, 2013, 162, 1324-1336.	2.3	150
218	Identification and characterization of CYP79D6v4, a cytochrome P450 enzyme producing aldoximes in black poplar (<i>Populus nigra</i>). Plant Signaling and Behavior, 2013, 8, e27640.	1.2	16
219	Non-Photochemical Quenching Capacity in Arabidopsis thaliana Affects Herbivore Behaviour. PLoS ONE, 2013, 8, e53232.	1.1	33
220	To Feed or Not to Feed: Plant Factors Located in the Epidermis, Mesophyll, and Sieve Elements Influence Pea Aphid's Ability to Feed on Legume Species. PLoS ONE, 2013, 8, e75298.	1.1	60
221	Nonseed plant <i>Selaginella moellendorffii</i> has both seed plant and microbial types of terpene synthases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14711-14715.	3.3	103
222	Can insect egg deposition †warn†a plant of future feeding damage by herbivorous larvae?. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 101-108.	1.2	58
223	CML42-Mediated Calcium Signaling Coordinates Responses to <i>Spodoptera</i> Herbivory and Abiotic Stresses in Arabidopsis Â. Plant Physiology, 2012, 159, 1159-1175.	2.3	233
224	Mixtures of plant secondary metabolites. , 2012, , 56-77.		50
225	Localization of Phenolics in Phloem Parenchyma Cells of Norway Spruce (<i>Picea abies</i>). ChemBioChem, 2012, 13, 2707-2713.	1.3	49
226	Inducibility of chemical defenses in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. Oecologia, 2012, 170, 183-198.	0.9	120
227	The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends in Plant Science, 2012, 17, 303-310.	4.3	402
228	Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10304-10309.	3.3	92
229	A Gain-of-Function Polymorphism Controlling Complex Traits and Fitness in Nature. Science, 2012, 337, 1081-1084.	6.0	158
230	Metabolism of glucosinolate-derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores. Insect Biochemistry and Molecular Biology, 2012, 42, 174-182.	1.2	112
231	Improved sulfur nutrition provides the basis for enhanced production of sulfur-containing defense compounds in Arabidopsis thaliana upon inoculation with Alternaria brassicicola. Journal of Plant Physiology, 2012, 169, 740-743.	1.6	17
232	An elm EST database for identifying leaf beetle egg-induced defense genes. BMC Genomics, 2012, 13, 242.	1.2	27
233	The organ-specific expression of terpene synthase genes contributes to the terpene hydrocarbon composition of chamomile essential oils. BMC Plant Biology, 2012, 12, 84.	1.6	66
234	Unique Proline–Benzoquinone Pigment from the Colored Nectar of "Bird's Coca Cola Tree―Functions in Bird Attractions. Organic Letters, 2012, 14, 4146-4149.	2.4	21

#	Article	IF	Citations
235	The first step in the biosynthesis of cocaine in Erythroxylum coca: the characterization of arginine and ornithine decarboxylases. Plant Molecular Biology, 2012, 78, 599-615.	2.0	82
236	Nonradioactive assay for detecting isoprenyl diphosphate synthase activity in crude plant extracts using liquid chromatography coupled with tandem mass spectrometry. Analytical Biochemistry, 2012, 422, 33-38.	1,1	26
237	The major volatile organic compound emitted from <i>Arabidopsis thaliana</i> flowers, the sesquiterpene (<i>E</i>)â€î²â€caryophyllene, is a defense against a bacterial pathogen. New Phytologist, 2012, 193, 997-1008.	3.5	408
238	Genetic evidence for natural productâ€mediated plant–plant allelopathy in rice (<i>Oryza sativa</i>). New Phytologist, 2012, 193, 570-575.	3 . 5	146
239	A single amino acid determines the site of deprotonation in the active center of sesquiterpene synthases SbTPS1 and SbTPS2 from Sorghum bicolor. Phytochemistry, 2012, 75, 6-13.	1.4	19
240	Expression pattern of the glucosinolate side chain biosynthetic genes MAM1 and MAM3 of Arabidopsis thaliana in different organs and developmental stages. Plant Physiology and Biochemistry, 2012, 53, 77-83.	2.8	24
241	Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology, 2011, 92, 316-324.	1.5	109
242	The MAP kinase MpkA controls cell wall integrity, oxidative stress response, gliotoxin production and iron adaptation in <i>Aspergillus fumigatus</i> i>Nolecular Microbiology, 2011, 82, 39-53.	1.2	125
243	Phylloplane location of glucosinolates in <i>Barbarea</i> spp. (Brassicaceae) and misleading assessment of host suitability by a specialist herbivore. New Phytologist, 2011, 189, 549-556.	3.5	51
244	Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry, 2011, 72, 1497-1509.	1.4	250
245	How plants give early herbivore alert: Volatile terpenoids attract parasitoids to egg-infested elms. Basic and Applied Ecology, 2011, 12, 403-412.	1.2	55
246	Floral Odor Bouquet Loses its Ant Repellent Properties After Inhibition of Terpene Biosynthesis. Journal of Chemical Ecology, 2011, 37, 1323-1331.	0.9	73
247	Attractiveness of Constitutive and Herbivore-Induced Sesquiterpene Blends of Maize to the Parasitic Wasp Cotesia marginiventris (Cresson). Journal of Chemical Ecology, 2011, 37, 582-591.	0.9	61
248	Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies). Plant Molecular Biology, 2011, 77, 577-590.	2.0	64
249	Metabolic detoxification of capsaicin by UDPâ€glycosyltransferase in three ⟨i⟩Helicoverpa⟨li⟩ species. Archives of Insect Biochemistry and Physiology, 2011, 78, 104-118.	0.6	71
250	Four terpene synthases produce major compounds of the gypsy moth feeding-induced volatile blend of Populus trichocarpa. Phytochemistry, 2011, 72, 897-908.	1.4	77
251	From Amino Acid to Glucosinolate Biosynthesis: Protein Sequence Changes in the Evolution of Methylthioalkylmalate Synthase in <i>Arabidopsis</i> Å Â. Plant Cell, 2011, 23, 38-53.	3.1	90
252	Biosynthesis of the Major Tetrahydroxystilbenes in Spruce, Astringin and Isorhapontin, Proceeds via Resveratrol and Is Enhanced by Fungal Infection Â. Plant Physiology, 2011, 157, 876-890.	2.3	112

#	Article	IF	Citations
253	Plant Community Diversity Influences Allocation to Direct Chemical Defence in Plantago lanceolata. PLoS ONE, 2011, 6, e28055.	1.1	49
254	Variation of Herbivore-Induced Volatile Terpenes among Arabidopsis Ecotypes Depends on Allelic Differences and Subcellular Targeting of Two Terpene Synthases, TPS02 and TPS03 Â Â. Plant Physiology, 2010, 153, 1293-1310.	2.3	131
255	Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry, 2010, 71, 179-187.	1.4	137
256	Species-specific responses of pine sesquiterpene synthases to sawfly oviposition. Phytochemistry, 2010, 71, 909-917.	1.4	31
257	Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Molecular Biology, 2010, 73, 587-603.	2.0	141
258	Glandular Trichomes of <i>Leucosceptrum canum</i> Harbor Defensive Sesterterpenoids. Angewandte Chemie - International Edition, 2010, 49, 4471-4475.	7.2	102
259	Expression profiling of various genes during the fruit development and ripening of mango. Plant Physiology and Biochemistry, 2010, 48, 426-433.	2.8	55
260	Constitutive emission of the aphid alarm pheromone, (E)- \hat{l}^2 -farnesene, from plants does not serve as a direct defense against aphids. BMC Ecology, 2010, 10, 23.	3.0	46
261	PLEIOTROPIC REGULATORY LOCUS 1 (PRL1) Integrates the Regulation of Sugar Responses with Isoprenoid Metabolism in Arabidopsis. Molecular Plant, 2010, 3, 101-112.	3.9	64
262	A Bifunctional Geranyl and Geranylgeranyl Diphosphate Synthase Is Involved in Terpene Oleoresin Formation in <i>Picea abies</i> . Plant Physiology, 2010, 152, 639-655.	2.3	94
263	Herbivore-Induced SABATH Methyltransferases of Maize That Methylate Anthranilic Acid Using <i>S</i> -Adenosyl- <scp>I</scp> -Methionine Â. Plant Physiology, 2010, 153, 1795-1807.	2.3	80
264	Subgroup 4 R2R3-MYBs in conifer trees: gene family expansion and contribution to the isoprenoid- and flavonoid-oriented responses. Journal of Experimental Botany, 2010, 61, 3847-3864.	2.4	146
265	Multiple stress factors and the emission of plant VOCs. Trends in Plant Science, 2010, 15, 176-184.	4.3	715
266	Old substrates for new enzymes of terpenoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10402-10403.	3.3	27
267	Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13213-13218.	3.3	298
268	The Plastidic Bile Acid Transporter 5 Is Required for the Biosynthesis of Methionine-Derived Glucosinolates in <i>Arabidopsis thaliana </i> Arabidopsis thaliana	3.1	122
269	Disruption of Adenosine-5′-Phosphosulfate Kinase in <i>Arabidopsis</i> Reduces Levels of Sulfated Secondary Metabolites. Plant Cell, 2009, 21, 910-927.	3.1	180
270	Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Current Opinion in Plant Biology, 2009, 12, 479-485.	3.5	387

#	Article	IF	CITATIONS
271	Changes in volatile composition during fruit development and ripening of â€~Alphonso' mango. Journal of the Science of Food and Agriculture, 2009, 89, 2071-2081.	1.7	52
272	Floral and insect-induced volatile formation in Arabidopsis lyrata ssp. petraea, a perennial, outcrossing relative of A. thaliana. Planta, 2009, 230, 1-11.	1.6	43
273	Mathematical modelling of aliphatic glucosinolate chain length distribution in Arabidopsis thaliana leaves. Phytochemistry Reviews, 2009, 8, 39-51.	3.1	18
274	Herbivore induction of the glucosinolate–myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochemistry Reviews, 2009, 8, 149-170.	3.1	240
275	Phytochemistry reviews—special issue on glucosinolates. Phytochemistry Reviews, 2009, 8, 1-2.	3.1	9
276	Arabidopsis thaliana encodes a bacterial-type heterodimeric isopropylmalate isomerase involved in both Leu biosynthesis and the Met chain elongation pathway of glucosinolate formation. Plant Molecular Biology, 2009, 71, 227-239.	2.0	73
277	Evaluation of Candidate Reference Genes for Real-Time Quantitative PCR of Plant Samples Using Purified cDNA as Template. Plant Molecular Biology Reporter, 2009, 27, 407-416.	1.0	38
278	The Effects of Arbuscular Mycorrhizal Fungi on Direct and Indirect Defense Metabolites of Plantago lanceolata L Journal of Chemical Ecology, 2009, 35, 833-843.	0.9	145
279	Emission of Volatile Organic Compounds After Herbivory from Trifolium pratense (L.) Under Laboratory and Field Conditions. Journal of Chemical Ecology, 2009, 35, 1335-1348.	0.9	91
280	Quantitative iTRAQ proteome and comparative transcriptome analysis of elicitorâ€induced Norway spruce (<i>Picea abies</i>) cells reveals elements of calcium signaling in the early conifer defense response. Proteomics, 2009, 9, 350-367.	1.3	30
281	A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nature Chemical Biology, 2009, 5, 283-291.	3.9	606
282	Molecular and biochemical evolution of maize terpene synthase 10, an enzyme of indirect defense. Phytochemistry, 2009, 70, 1139-1145.	1.4	80
283	Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 2009, 70, 1621-1637.	1.4	891
284	Real-Time Analysis of Alarm Pheromone Emission by the Pea Aphid (Acyrthosiphon Pisum) Under Predation. Journal of Chemical Ecology, 2008, 34, 76-81.	0.9	42
285	Increased Terpenoid Accumulation in Cotton (Gossypium hirsutum) Foliage is a General Wound Response. Journal of Chemical Ecology, 2008, 34, 508-522.	0.9	83
286	Do Aphid Colonies Amplify their Emission of Alarm Pheromone?. Journal of Chemical Ecology, 2008, 34, 1149-1152.	0.9	33
287	Formation of Simple Nitriles upon Glucosinolate Hydrolysis Affects Direct and Indirect Defense Against the Specialist Herbivore, Pieris rapae. Journal of Chemical Ecology, 2008, 34, 1311-1321.	0.9	115
288	Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine?. Planta, 2008, 228, 427-438.	1.6	62

#	Article	IF	Citations
289	Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry, 2008, 69, 49-57.	1.4	77
290	ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis. Phytochemistry, 2008, 69, 663-671.	1.4	90
291	Diastereomeric stilbene glucoside dimers from the bark of Norway spruce (Picea abies). Phytochemistry, 2008, 69, 772-782.	1.4	42
292	Determination of the absolute configuration of the glucosinolate methyl sulfoxide group reveals a stereospecific biosynthesis of the side chain. Phytochemistry, 2008, 69, 2737-2742.	1.4	30
293	Alarm pheromone emission by pea aphid, <i>AcyrthosiphonÂpisum</i> , clones under predation by lacewing larvae. Entomologia Experimentalis Et Applicata, 2008, 128, 403-409.	0.7	18
294	Sulfur-Containing Secondary Metabolites and Their Role in Plant Defense. Advances in Photosynthesis and Respiration, 2008, , 201-222.	1.0	17
295	Implication of HMGR in homeostasis of sequestered and de novo produced precursors of the iridoid biosynthesis in leaf beetle larvae. Insect Biochemistry and Molecular Biology, 2008, 38, 76-88.	1.2	19
296	The <i>Arabidopsis thaliana</i> Type I Isopentenyl Diphosphate Isomerases Are Targeted to Multiple Subcellular Compartments and Have Overlapping Functions in Isoprenoid Biosynthesis. Plant Cell, 2008, 20, 677-696.	3.1	122
297	Identification and Regulation of TPS04/GES, an <i>Arabidopsis</i> Geranyllinalool Synthase Catalyzing the First Step in the Formation of the Insect-Induced Volatile C16-Homoterpene TMTT. Plant Cell, 2008, 20, 1152-1168.	3.1	136
298	Arabidopsis Branched-Chain Aminotransferase 3 Functions in Both Amino Acid and Glucosinolate Biosynthesis Â. Plant Physiology, 2008, 146, 1028-1039.	2.3	112
299	Insects turn up their noses at sweating plants. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17211-17212.	3.3	8
300	A Maize (<i>E</i>)-β-Caryophyllene Synthase Implicated in Indirect Defense Responses against Herbivores Is Not Expressed in Most American Maize Varieties. Plant Cell, 2008, 20, 482-494.	3.1	422
301	Protonation of a Neutral (S)- \hat{l}^2 -Bisabolene Intermediate Is Involved in (S)- \hat{l}^2 -Macrocarpene Formation by the Maize Sesquiterpene Synthases TPS6 and TPS11. Journal of Biological Chemistry, 2008, 283, 20779-20788.	1.6	89
302	A Novel 2-Oxoacid-Dependent Dioxygenase Involved in the Formation of the Goiterogenic 2-Hydroxybut-3-enyl Glucosinolate and Generalist Insect Resistance in Arabidopsis Â. Plant Physiology, 2008, 148, 2096-2108.	2.3	131
303	Nonuniform distribution of glucosinolates in <i>Arabidopsis thaliana</i> leaves has important consequences for plant defense. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6196-6201.	3.3	251
304	Two Arabidopsis Genes (IPMS1 and IPMS2) Encode Isopropylmalate Synthase, the Branchpoint Step in the Biosynthesis of Leucine. Plant Physiology, 2007, 143, 970-986.	2.3	88
305	MAM3 Catalyzes the Formation of All Aliphatic Glucosinolate Chain Lengths in Arabidopsis. Plant Physiology, 2007, 144, 60-71.	2.3	194
306	Plant volatiles carry both public and private messages. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5257-5258.	3.3	55

#	Article	IF	Citations
307	Iridoid biosynthesis in Chrysomelina larvae: Fat body produces early terpenoid precursors. Insect Biochemistry and Molecular Biology, 2007, 37, 255-265.	1.2	35
308	Identification and characterization of the BAHD acyltransferase malonyl CoA: Anthocyanidin 5-O-glucoside-6″-O-malonyltransferase (At5MAT) inArabidopsis thaliana. FEBS Letters, 2007, 581, 872-878.	1.3	54
309	Glycine Conjugates in a Lepidopteran Insect Herbivore—The Metabolism of Benzylglucosinolate in the Cabbage White Butterfly,Pieris rapae. ChemBioChem, 2007, 8, 1757-1757.	1.3	7
310	Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-1-yl acetate in Arabidopsis thaliana. Plant Journal, 2007, 49, 194-207.	2.8	199
311	The function of terpene natural products in the natural world. Nature Chemical Biology, 2007, 3, 408-414.	3.9	1,564
312	Characterization of seedâ€specific benzoyloxyglucosinolate mutations in <i>Arabidopsis thaliana</i> Plant Journal, 2007, 51, 1062-1076.	2.8	90
313	The Effect of Sulfur Nutrition on Plant Glucosinolate Content: Physiology and Molecular Mechanisms. Plant Biology, 2007, 9, 573-581.	1.8	260
314	Cell- and tissue-specific localization and regulation of the epithiospecifier protein in Arabidopsis thaliana. Plant Molecular Biology, 2007, 64, 173-185.	2.0	59
315	Functional identification and differential expression of 1-deoxy-d-xylulose 5-phosphate synthase in induced terpenoid resin formation of Norway spruce (Picea abies). Plant Molecular Biology, 2007, 65, 243-257.	2.0	126
316	The Desert Locust, Schistocerca gregaria, Detoxifies the Glucosinolates of Schouwia purpurea by Desulfation. Journal of Chemical Ecology, 2007, 33, 1542-1555.	0.9	68
317	Microchemical analysis of laser-microdissected stone cells of Norway spruce by cryogenic nuclear magnetic resonance spectroscopy. Planta, 2007, 225, 771-779.	1.6	60
318	Cloning and characterization of isoprenyl diphosphate synthases with farnesyl diphosphate and geranylgeranyl diphosphate synthase activity from Norway spruce (Picea abies) and their relation to induced oleoresin formation. Phytochemistry, 2007, 68, 2649-2659.	1.4	43
319	BIOLOGY AND BIOCHEMISTRY OF GLUCOSINOLATES. Annual Review of Plant Biology, 2006, 57, 303-333.	8.6	1,917
320	Two pockets in the active site of maize sesquiterpene synthase TPS4 carry out sequential parts of the reaction scheme resulting in multiple products. Archives of Biochemistry and Biophysics, 2006, 448, 83-92.	1.4	51
321	A talent for terpenes: A biographical sketch of Rod Croteau. Archives of Biochemistry and Biophysics, 2006, 448, 1-2.	1.4	0
322	Plant volatiles: a lack of function or a lack of knowledge?. Trends in Plant Science, 2006, 11, 421-421.	4.3	46
323	The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed. FEBS Journal, 2006, 273, 122-136.	2.2	94
324	Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates. FEBS Journal, 2006, 273, 2432-2446.	2.2	129

#	Article	IF	CITATIONS
325	DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant Journal, 2006, 47, 10-24.	2.8	243
326	Rod Croteau: 35 years of terrific terpene biochemistry. Phytochemistry, 2006, 67, 1706-1707.	1.4	1
327	Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry, 2006, 67, 2450-2462.	1.4	248
328	Diversity and Distribution of Floral Scent. Botanical Review, The, 2006, 72, 1-120.	1.7	1,094
329	Molecular Regulation of Induced Terpenoid Biosynthesis in Conifers. Phytochemistry Reviews, 2006, 5, 179-189.	3.1	22
330	Glucosinolate hydrolysis in Lepidium sativum––identification of the thiocyanate-forming protein. Plant Molecular Biology, 2006, 63, 49-61.	2.0	110
331	Altered Glucosinolate Hydrolysis in Genetically Engineered Arabidopsis thaliana and its Influence on the Larval Development of Spodoptera littoralis. Journal of Chemical Ecology, 2006, 32, 2333-2349.	0.9	139
332	Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle lps typographus. Oecologia, 2006, 148, 426-436.	0.9	157
333	Rod Croteau: 35 years of terrific terpene biochemistry. Phytochemistry, 2006, 67, 1562-1563.	1.4	1
334	Glycine Conjugates in a Lepidopteran Insect Herbivore-The Metabolism of Benzylglucosinolate in the Cabbage White Butterfly, Pieris rapae. ChemBioChem, 2006, 7, 1982-1989.	1.3	31
335	Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiology, 2006, 26, 977-988.	1.4	150
336	BRANCHED-CHAIN AMINOTRANSFERASE4 Is Part of the Chain Elongation Pathway in the Biosynthesis of Methionine-Derived Glucosinolates in Arabidopsis. Plant Cell, 2006, 18, 2664-2679.	3.1	177
337	Positive selection driving diversification in plant secondary metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9118-9123.	3.3	220
338	The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1129-1134.	3.3	491
339	Geographic and evolutionary diversification of glucosinolates among near relatives of Arabidopsis thaliana (Brassicaceae). Phytochemistry, 2005, 66, 1321-1333.	1.4	126
340	Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecology Letters, 2005, 8, 596-603.	3.0	173
341	Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant Journal, 2005, 42, 757-771.	2.8	314
342	Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature, 2005, 434, 732-737.	13.7	1,099

#	Article	IF	CITATIONS
343	The secondary metabolism of Arabidopsis thaliana: growing like a weed. Current Opinion in Plant Biology, 2005, 8, 308-316.	3.5	268
344	Expression profiling of metabolic genes in response to methyl jasmonate reveals regulation of genes of primary and secondary sulfur-related pathways in Arabidopsis thaliana. Photosynthesis Research, 2005, 86, 491-508.	1.6	111
345	From The Cover: The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 933-938.	3.3	447
346	Elucidation of Gene-to-Gene and Metabolite-to-Gene Networks in Arabidopsis by Integration of Metabolomics and Transcriptomics*. Journal of Biological Chemistry, 2005, 280, 25590-25595.	1.6	453
347	Induced Chemical Defenses in Conifers: Biochemical and Molecular Approaches to Studying Their Function. Recent Advances in Phytochemistry, 2005, 39, 1-28.	0.5	23
348	Characterization of a Root-Specific Arabidopsis Terpene Synthase Responsible for the Formation of the Volatile Monoterpene 1,8-Cineole. Plant Physiology, 2004, 135, 1956-1966.	2.3	207
349	Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4859-4864.	3.3	440
350	Biochemistry of Plant Volatiles: Figure 1 Plant Physiology, 2004, 135, 1893-1902.	2.3	873
351	Terpenoids in Genetically Transformed Cultures of Chamomile. Chromatographia, 2004, 60, .	0.7	2
352	Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle. Planta, 2004, 218, 1026-1035.	1.6	109
353	The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distributions. Phytochemistry, 2004, 65, 1895-1902.	1.4	119
354	Glucosinolate biosynthesis: demonstration and characterization of the condensing enzyme of the chain elongation cycle in Eruca sativa. Phytochemistry, 2004, 65, 1073-1084.	1.4	46
355	Â-Eudesmol, a New Sesquiterpene Component in Intact and Organized Root of Chamomile (Chamomilla) Tj ETQq1	1 0.7843 0.7	14 rgBT /
356	The Variability of Sesquiterpenes Emitted from Two Zea mays Cultivars Is Controlled by Allelic Variation of Two Terpene Synthase Genes Encoding Stereoselective Multiple Product Enzymes. Plant Cell, 2004, 16, 1115-1131.	3.1	206
357	Formation of Monoterpenes in Antirrhinum majus and Clarkia breweri Flowers Involves Heterodimeric Geranyl Diphosphate Synthases. Plant Cell, 2004, 16, 977-992.	3.1	162
358	One-dimensional 13C NMR and HPLC-1H NMR techniques for observing carbon-13 and deuterium labelling in biosynthetic studies. Phytochemistry Reviews, 2003, 2, 31-43.	3.1	22
359	A novel sex-specific and inducible monoterpene synthase activity associated with a pine bark beetle, the pine engraver, lps pini. Die Naturwissenschaften, 2003, 90, 173-179.	0.6	43
360	Functional identification of AtTPS03 as (E)-β-ocimene synthase: a monoterpene synthase catalyzing jasmonate- and wound-induced volatile formation in Arabidopsis thaliana. Planta, 2003, 216, 745-751.	1.6	134

#	Article	IF	CITATIONS
361	Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry, 2003, 62, 471-481.	1.4	814
362	Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Current Opinion in Biotechnology, 2003, 14, 169-176.	3.3	245
363	An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant Journal, 2003, 36, 577-588.	2.8	278
364	European agbiotech crisis?. Nature Biotechnology, 2003, 21, 360-360.	9.4	1
365	Chapter five Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. Recent Advances in Phytochemistry, 2003, , 101-125.	0.5	131
366	Biosynthesis and Emission of Terpenoid Volatiles from Arabidopsis Flowers. Plant Cell, 2003, 15, 481-494.	3.1	381
367	Induction of Volatile Terpene Biosynthesis and Diurnal Emission by Methyl Jasmonate in Foliage of Norway Spruce. Plant Physiology, 2003, 132, 1586-1599.	2.3	381
368	Biochemical and Molecular Regulation of Monoterpene Accumulation in Peppermint (Mentha ×) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
369	Methyl Jasmonate Induces Traumatic Resin Ducts, Terpenoid Resin Biosynthesis, and Terpenoid Accumulation in Developing Xylem of Norway Spruce Stems. Plant Physiology, 2002, 129, 1003-1018.	2.3	462
370	The Maize Gene terpene synthase 1 Encodes a Sesquiterpene Synthase Catalyzing the Formation of (E)- $\hat{1}^2$ -Farnesene, (E)-Nerolidol, and (E,E)-Farnesol after Herbivore Damage. Plant Physiology, 2002, 130, 2049-2060.	2.3	226
371	Where will the wood come from? Plantation forests and the role of biotechnology. Trends in Biotechnology, 2002, 20, 291-296.	4.9	148
372	The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology, 2002, 5, 237-243.	3.5	956
373	Constitutive plant toxins and their role in defense against herbivores and pathogens. Current Opinion in Plant Biology, 2002, 5, 300-307.	3.5	450
374	Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry, 2002, 59, 663-671.	1.4	226
375	Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana attenuata and N. sylvestris. Phytochemistry, 2002, 60, 109-116.	1.4	39
376	Partial Purification and Characterization of the Short-Chain Prenyltransferases, Geranyl Diphosphate Synthase and Farnesyl Diphosphate Synthase, from Abies grandis (Grand Fir). Archives of Biochemistry and Biophysics, 2001, 386, 233-242.	1.4	53
377	Genetic Control of Natural Variation in Arabidopsis Glucosinolate Accumulation. Plant Physiology, 2001, 126, 811-825.	2.3	607
378	The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana. Phytochemistry, 2001, 57, 23-32.	1.4	110

#	Article	IF	CITATIONS
379	The Arabidopsis Epithiospecifier Protein Promotes the Hydrolysis of Glucosinolates to Nitriles and Influences <i>Trichoplusia ni</i> Herbivory. Plant Cell, 2001, 13, 2793-2807.	3.1	400
380	bus, a Bushy Arabidopsis CYP79F1 Knockout Mutant with Abolished Synthesis of Short-Chain Aliphatic Glucosinolates. Plant Cell, 2001, 13, 351-367.	3.1	235
381	Gene Duplication in the Diversification of Secondary Metabolism: Tandem 2-Oxoglutarate–Dependent Dioxygenases Control Glucosinolate Biosynthesis in Arabidopsis. Plant Cell, 2001, 13, 681-693.	3.1	447
382	Comparative Quantitative Trait Loci Mapping of Aliphatic, Indolic and Benzylic Glucosinolate Production in <i>Arabidopsis thaliana</i> Leaves and Seeds. Genetics, 2001, 159, 359-370.	1.2	217
383	A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiology, 2001, 127, 1077-88.	2.3	109
384	Demonstration and characterization of (E)-nerolidol synthase from maize: a herbivore-inducible terpene synthase participating in (3 E)-4,8-dimethyl-1,3,7-nonatriene biosynthesis. Planta, 2000, 210, 815-822.	1.6	119
385	Regulation of Monoterpene Accumulation in Leaves of Peppermint. Plant Physiology, 2000, 122, 205-214.	2.3	290
386	Biochemical, Molecular Genetic and Evolutionary Aspects of Defense-Related Terpenoid Metabolism in Conifers. Recent Advances in Phytochemistry, 2000, 34, 109-150.	0.5	35
387	Distribution of Peltate Glandular Trichomes on Developing Leaves of Peppermint. Plant Physiology, 2000, 124, 655-664.	2.3	161
388	Terpenoid Secondary Metabolism in Arabidopsis thaliana: cDNA Cloning, Characterization, and Functional Expression of a Myrcene/(E)-Î ² -Ocimene Synthase. Archives of Biochemistry and Biophysics, 2000, 375, 261-269.	1.4	137
389	The Methionine Chain Elongation Pathway in the Biosynthesis of Glucosinolates in Eruca sativa (Brassicaceae). Archives of Biochemistry and Biophysics, 2000, 378, 411-419.	1.4	100
390	Development of Peltate Glandular Trichomes of Peppermint. Plant Physiology, 2000, 124, 665-680.	2.3	214
391	Developmental Regulation of Monoterpene Biosynthesis in the Glandular Trichomes of Peppermint. Plant Physiology, 2000, 122, 215-224.	2.3	209
392	Cytochrome P-450 dependent (+)-limonene-6-hydroxylation in fruits of caraway (Carum carvi)1Part 2 in the series`Biosynthesis of limonene and carvone in fruits of caraway (Carum carvi L.)' (Bouwmeester,) Tj ETQq0 C) O1rg/BT/C	Overdock 10 Ti
393	Limonene Synthase, the Enzyme Responsible for Monoterpene Biosynthesis in Peppermint, Is Localized to Leucoplasts of Oil Gland Secretory Cells 1. Plant Physiology, 1999, 120, 879-886.	2.3	186
394	Chemical ecology in the molecular era. Trends in Plant Science, 1998, 3, 362-365.	4.3	27
395	Biosynthesis of the Monoterpenes Limonene and Carvone in the Fruit of Caraway1. Plant Physiology, 1998, 117, 901-912.	2.3	153
396	Metabolic costs of terpenoid accumulation in higher plants. Journal of Chemical Ecology, 1994, 20, 1281-1328.	0.9	450

#	Article	IF	Citations
397	Absence of rapid terpene turnover in several diverse species of terpene-accumulating plants. Oecologia, 1993, 96, 583-592.	0.9	43
398	Further terpenoids of cultivated sunflower, Helianthus annuus (Asteraceae). Biochemical Systematics and Ecology, 1993, 21, 647.	0.6	2
399	Problems and Perspectives in the Study of Metabolic Turnover of Plant Secondary Metabolites., 1992,, 229-238.		0
400	Evidence for an essential histidine residue in 4S-limonene synthase and other terpene cyclases. Archives of Biochemistry and Biophysics, 1992, 299, 77-82.	1.4	45
401	Characterization and mechanism of (4S)-limonene synthase, A monoterpene cyclase from the glandular trichomes of peppermint (Mentha x piperita). Archives of Biochemistry and Biophysics, 1992, 296, 49-57.	1.4	118
402	Morphology and monoterpene biosynthetic capabilities of secretory cell clusters isolated from glandular trichomes of peppermint (Mentha piperita L.). Planta, 1992, 187, 445-54.	1.6	151
403	Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Analytical Biochemistry, 1992, 200, 130-138.	1.1	177
404	Lack of rapid monoterpene turnover in rooted plants: implications for theories of plant chemical defense. Oecologia, 1991, 87, 373-376.	0.9	80
405	Antifungal activities of sunflower terpenoids. Biochemical Systematics and Ecology, 1990, 18, 325-328.	0.6	33
406	Metabolism of Monoterpenes in Cell Cultures of Common Sage (Salvia officinalis). Plant Physiology, 1990, 93, 1559-1567.	2.3	27
407	Biosynthesis of monoterpenes: Stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to camphane and isocamphane monoterpenes. Archives of Biochemistry and Biophysics, 1990, 277, 374-381.	1.4	27
408	Biochemical and Histochemical Localization of Monoterpene Biosynthesis in the Glandular Trichomes of Spearmint (<i>Mentha spicata</i>). Plant Physiology, 1989, 89, 1351-1357.	2.3	221
409	Terpenes of Wild Sunflowers (Helianthus): An Effective Mechanism Against Seed Predation by Larvae of the Sunflower Moth, Homoeosoma electellum (Lepidoptera: Pyralidae). Environmental Entomology, 1987, 16, 586-592.	0.7	66
410	Mechanized techniques for the selective extraction of enzymes from plant epidermal glands. Analytical Biochemistry, 1987, 163, 159-164.	1.1	58
411	Behavioral and growth responses of specialist herbivore, Homoeosoma electellum, to major terpenoid of its host, Helianthus SPP. Journal of Chemical Ecology, 1986, 12, 1505-1521.	0.9	60
412	Sesquiterpene lactone and diterpene constituents of helianthus annuus. Phytochemistry, 1985, 24, 1537-1539.	1.4	39
413	Sesquiterpene lactones from Helianthus niveus subsp. niveus. Phytochemistry, 1985, 24, 783-785.	1.4	10
414	Sesquiterpene lactones and diterpene carboxylic acids from Helianthus divaricatus, H. resinosus and H. salicifolius. Phytochemistry, 1985, 25, 159-165.	1.4	8

#	Article	IF	CITATIONS
415	Sesquiterpene lactones from a texas population of Helianthus maximiliani. Phytochemistry, 1984, 23, 1959-1966.	1.4	50
416	Germacranolides from Viguiera microphylla. Phytochemistry, 1984, 23, 1281-1287.	1.4	12
417	Furanoheliangolides from helianthus schweinitzii. Phytochemistry, 1984, 23, 2557-2559.	1.4	13
418	Germacranolides from Helianthus californicus. Phytochemistry, 1984, 23, 2561-2571.	1.4	20
419	1,2-secogermacranolides from Helianthus giganteus and H. hirsutus. Phytochemistry, 1984, 23, 2573-2575.	1.4	9
420	Furanoheliangolides from Viguiera greggii. Phytochemistry, 1984, 23, 1967-1970.	1.4	14
421	Sesquiterpene lactones from two newly-described species of Vernonia: V. jonesii and V. pooleae. Phytochemistry, 1984, 23, 777-780.	1.4	13
422	Sesquiterpene lactones of Helianthus gracilentus. Phytochemistry, 1984, 23, 2277-2279.	1.4	8
423	Sesquiterpene Lactones of One Chemical Race of Helianthus maximiliani. Journal of Natural Products, 1984, 47, 748-750.	1.5	7
424	Terpenoids of Helianthus nuttalli. Journal of Natural Products, 1984, 47, 1021-1023.	1.5	4
425	Secondary metabolites and the higher classification of angiosperms. Nordic Journal of Botany, 1983, 3, 5-34.	0.2	103
426	Relative Configuration of Glechomafuran Isolated from the Fruits of Smyrnium olusatrum. Journal of Natural Products, 1983, 46, 490-492.	1.5	14
427	Sesquiterpene lactones and diterpenoids from Helianthus argophyllus. Phytochemistry, 1982, 21, 709-713.	1.4	47
428	Diterpene carboxylic acids and a heliangolide from Helianthus angustifolius. Phytochemistry, 1981, 20, 2393-2396.	1.4	33
429	11,13-Dehydrodesacetylmatricarin and other sesquiterpene lactones from Artemisia ludoviciana var. Ludoviciana and the identity of artecanin and chyrsartemin B. Phytochemistry, 1980, 19, 103-106.	1.4	43
430	The effect of moisture stress on monoterpenoid yield and composition in Satureja douglasii. Biochemical Systematics and Ecology, 1978, 6, 33-43.	0.6	49
431	Biochemistry of Terpenoids: Monoterpenes, Sesquiterpenes and Diterpenes., 0,, 258-303.		67
432	A Gene Controlling Variation in Arabidopsis Glucosinolate Composition Is Part of the Methionine Chain Elongation Pathway. , 0, .		36