Marco Folini

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3262914/publications.pdf
Version: 2024-02-01

$1 \quad$ Telomere as a Therapeutic Target in Dedifferentiated Liposarcoma. Cancers, 2022, 14, 2624. 3.7 1
On the Road to Fight Cancer: The Potential of G-Quadruplex Ligands as Novel Therapeutic Agents.4.145
International Journal of Molecular Sciences, 2021, 22, 5947.3.7The Role of Alternative Lengthening of Telomeres Mechanism in Cancer: Translational and TherapeuticImplications. Cancers, 2020, 12, 949.29
Comparative Assessment of Antitumor Effects and Autophagy Induction as a Resistance Mechanism by4 Cytotoxics and EZH2 Inhibition in INII-Negative Epithelioid Sarcoma Patient-Derived Xenograft.$3.7 \quad 21$
Cancers, 2019, 11, 1015.
5 The Oncogenic Signaling Pathways in BRAF-Mutant Melanoma Cells are Modulated by Naphthalene
Diimide-Like G-Quadruplex Ligands. Cells, 2019, 8, 1274 .
2019, 177, 401-413.
Luminescent dinuclear rhenium(I) PNA conjugates for microRNA-21 targeting: Synthesis,
32-39.8 miR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repairmiR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair
through PKCÎ́ and ZEB1 inhibition. Journal of Experimental and Clinical Cancer Research, 2019, 38, 51.
64
9 Down-Regulation of the Androgen Receptor by G-Quadruplex Ligands Sensitizes Castration-Resistant Prostate Cancer Cells to Enzalutamide. Journal of Medicinal Chemistry, 2018, 61, 8625-8638. 6.4 28
Naphthalene diimideâ€derivatives Gâ€euadruplex ligands induce cell proliferation inhibition, mild10 telomeric dysfunction and cell cycle perturbation in U251MG glioma cells. FEBS Journal, 2018, 285,4.721
3769-3785.
11 CPAM type 2-derived mesenchymal stem cells: Malignancy risk study in a 14 -month-old boy. Pediatric Pulmonology, 2017, 52, 990-999.
2.0 8
12 Synthesis and Superpotent Anticancer Activity of Tubulysins Carrying Nonâ€hydrolysable Nâ€Substituentson Tubuvaline. Chemistry - A European Journal, 2017, 23, 5842-5850.
3.3 9
miR-380-5p-mediated repression of TEP1 and TSPYL5 interferes with telomerase activity and favours the
13 emergence of an â€œALT-likeâ€ophenotype in diffuse malignant peritoneal mesothelioma cells. Journal of17.023
Hematology and Oncology, 2017, 10, 140.Emerging Role of G-quadruplex DNA as Target in Anticancer Therapy. Current Pharmaceutical Design,1.967
2017, 22, 6612-6624.$1.9 \quad 67$
15 Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). 9.1 4,701 Autophagy, 2016, 12, 1-222.Targeting of <i>RET<|i> oncogene by naphthalene diimide-mediated gene promoter G-quadruplexstabilization exerts anti-tumor activity in oncogene-addicted human medullary thyroid cancer.

Assessment of gene promoter G-quadruplex binding and modulation by a naphthalene dimide
derivative in tumor cells. International Journal of Oncology, 2015, 46, 369-380.

Unravelling â€œoff-targetâ€•effects of redox-active polymers and polymer multilayered capsules in prostate cancer cells. Nanoscale, 2015, 7, 6261-6270.
20
5.5 Water-soluble isoindolo[2,1-a]quinoxalin-6-imines: InÂvitro antiproliferative activity and molecular
mechanism(s) of action. European Journal of Medicinal Chemistry, 2015, 94, 149-162.

Redox-Sensitive PEGâ€"Polypeptide Nanoporous Particles for Survivin Silencing in Prostate Cancer Cells. Biomacromolecules, 2015, 16, 2168-2178.
5.4

38

23 Double stranded promoter region of BRAF undergoes to structural rearrangement in nearly
2.8
5.6

9

51

Naphthalene diimides as red fluorescent pH sensors for functional cell imaging. Organic and
Biomolecular Chemistry, 2015, 13, 570-576.
2.8

Editorial (Thematic Issue: Targeting Telomere Maintenance Mechanisms in Cancer Therapy). Current
Pharmaceutical Design, 2014, 20, 6359-6360.

Synergistic Cooperation Between Sunitinib and Cisplatin Promotes Apoptotic Cell Death in Human Medullary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 498-509.
3.6

23
Senescent stroma promotes prostate cancer progression: The role of miRâ€210. Molecular Oncology,2014, 8, 1729-1746.
$4.6 \quad 102$prostate cancer cells. Biochemical Pharmacology, 2014, 87, 579-597.
4.4
29 MicroRNA-dependent Regulation of Telomere Maintenance Mechanisms: A Field as Much Unexplored as Potentially Promising. Current Pharmaceutical Design, 2014, 20, 6404-6421.
1.9 14Nestling telomere length does not predict longevity, but covaries with adult body size in wild barnswallows. Biology Letters, 2013, 9, 20130340.
2.3

30
30 swallows. Biology Letters, 2013, 9, 20130340.

Targeting Loop Adenines in Gâ€Quadruplex by a Selective Oxirane. Chemistry - A European Journal, 2013, 19, 78-81.

G-Quadruplex Structures in the Human Genome as Novel Therapeutic Targets. Molecules, 2013, 18,
3.8

125

Cancer Therapy. Current Topics in Medicinal Chemistry, 2012, 12, 69-78.
37

> miR-205 regulates basement membrane deposition in human prostate: implications for cancer
> development. Cell Death and Differentiation, $2012,19,1750-1760$.
11.2

77

Redox-Active Polymer Microcapsules for the Delivery of a Survivin-Specific siRNA in Prostate Cancer Cells. ACS Nano, 2011, 5, 1335-1344.
14.6

99

39 Telomeres as targets for anticancer therapies. Expert Opinion on Therapeutic Targets, 2011, 15, 579-593. 35

40 MicroRNAs as new therapeutic targets and tools in cancer. Expert Opinion on Therapeutic Targets,
$3.4 \quad 81$
2011, 15, 265-279.

MicroRNAs in Prostate Cancer: A Possible Role as Novel Biomarkers and Therapeutic Targets?. , 2011, ,
145-162.
0

42 Targeting Survivin in Cancer Therapy: Pre-clinical Studies. , 2010, , 147-168.
1

43 Remarkable interference with telomeric function by a G-quadruplex selective bisantrene regioisomer.
Biochemical Pharmacology, 2010, 79, 1781-1790.
$4.4 \quad 17$

44 miR-21: an oncomir on strike in prostate cancer. Molecular Cancer, 2010, 9, 12.
19.2

189

45	Apollon gene silencing induces apoptosis in breast cancer cells through p53 stabilisation and caspase-3 activation. British Journal of Cancer, 2009, 100, 739-746.	6.4	47
46	miR-205 Exerts Tumor-Suppressive Functions in Human Prostate through Down-regulation of Protein Kinase CÎ . Cancer Research, 2009, 69, 2287-2295.	0.9	334
47	Targeting the telosome: Therapeutic implications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 309-316.	3.8	37
48	Towards the definition of prostate cancer-related microRNAs: where are we now?. Trends in Molecular Medicine, 2009, 15, 381-390.	6.7	54
49	RNA Interference-Mediated Validation of Genes Involved in Telomere Maintenance and Evasion of Apoptosis as Cancer Therapeutic Targets. Methods in Molecular Biology, 2009, 487, 1-28.	0.9	12

50 Targeting survivin in cancer therapy. Expert Opinion on Therapeutic Targets, 2008, 12, 463-476.

$3.4 \quad 154$
51 Validation of Telomerase and Survivin as Anticancer Therapeutic Targets Using Ribozymes and 17
Small-Interfering RNAs. , 2007, 361, 239-264.

Photochemical Internalization: A New Tool for Drug Delivery. Current Pharmaceutical
Biotechnology, 2007, 8, 362-372.
1.6

116

Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis, 2007, 28,
$1133-1139$.
2.8

217

Dimerizable Redox-Sensitive Triazine-Based Cationic Lipids for inâ€...vitro Gene Delivery. ChemMedChem,
2007, 2, 292-296.

55	Photochemically enhanced delivery of a cell-penetrating peptide nucleic acid conjugate targeting human telomerase reverse transcriptase: effects on telomere status and proliferative potential of human prostate cancer cells. Cell Proliferation, 2007, 40, 905-920.	5.3	24
56	Down-regulation of human telomerase reverse transcriptase through specific activation of RNAi pathway quickly results in cancer cell growth impairment. Biochemical Pharmacology, 2007, 73, 1703-1714.	4.4	45
57	Therapeutic Uses of Peptide Nucleic Acids (PNA) in Oncology. , 2006, , 171-180.		2
58	Silencing of survivin gene by small interfering RNAs produces supra-additive growth suppression in combination with 17-allylamino-17-demethoxygeldanamycin in human prostate cancer cells. Molecular Cancer Therapeutics, 2006, 5, 179-186.	4.1	73
59	Therapeutic uses of peptide nucleic acids (PNA) in oncology. International Journal of Peptide Research and Therapeutics, 2005, 10, 287-296.	1.9	0
60	Targeting Telomerase by Antisense-Based Approaches: Perspectives for New Anti-Cancer Therapies. Current Pharmaceutical Design, 2005, 11, 1105-1117.	1.9	30
61	Antisense oligonucleotide-mediated inhibition of hTERT, but not hTERC, induces rapid cell growth decline and apoptosis in the absence of telomere shortening in human prostate cancer cells. European Journal of Cancer, 2005, 41, 624-634.	2.8	80
62	Ribozyme-mediated down-regulation of survivin expression sensitizes human melanoma cells to topotecan in vitro and in vivo. Carcinogenesis, 2004, 25, 1129-1136.	2.8	57
63	Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene, 2004, 23, 386-394.	5.9	92

74 Ribozyme-mediated attenuation of survivin expression sensitizes human melanoma cells to
$77 \quad$ Inhibition of Telomerase Activity by a Hammerhead Ribozyme Targeting the RNA Component of $0.7 \quad 68$
Telomerase in Human Melanoma Cells. Journal of Investigative Dermatology, 2000, 114, 259-267.
Telomerase activity and telomere length in human ovarian cancer and melanoma cell lines: 78 correlation with sensitivity to DNA damaging agents.. International Journal of Oncology, 2000, 16, 3.3 13 995-1002.
79 Attenuation of telomerase activity does not increase sensitivity of human melanoma cells to 2.8 28
81 Macrophage populations of different origins have distinct susceptibilities to lipid peroxidation

