
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3262914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	miR-205 Exerts Tumor-Suppressive Functions in Human Prostate through Down-regulation of Protein Kinase Cε. Cancer Research, 2009, 69, 2287-2295.	0.9	334
3	Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis, 2007, 28, 1133-1139.	2.8	217
4	miR-21: an oncomir on strike in prostate cancer. Molecular Cancer, 2010, 9, 12.	19.2	189
5	Targeting survivin in cancer therapy. Expert Opinion on Therapeutic Targets, 2008, 12, 463-476.	3.4	154
6	G-Quadruplex Structures in the Human Genome as Novel Therapeutic Targets. Molecules, 2013, 18, 12368-12395.	3.8	125
7	Photochemical Internalization: A New Tool for Drug Delivery. Current Pharmaceutical Biotechnology, 2007, 8, 362-372.	1.6	116
8	Senescent stroma promotes prostate cancer progression: The role of miRâ€210. Molecular Oncology, 2014, 8, 1729-1746.	4.6	102
9	Redox-Active Polymer Microcapsules for the Delivery of a Survivin-Specific siRNA in Prostate Cancer Cells. ACS Nano, 2011, 5, 1335-1344.	14.6	99
10	Hybrid ligand–alkylating agents targeting telomeric G-quadruplex structures. Organic and Biomolecular Chemistry, 2012, 10, 2798.	2.8	94
11	Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene, 2004, 23, 386-394.	5.9	92
12	Radiosensitization of Human Melanoma Cells by Ribozyme-Mediated Inhibition of Survivin Expression. Journal of Investigative Dermatology, 2003, 120, 648-654.	0.7	90
13	miR-205 impairs the autophagic flux and enhances cisplatin cytotoxicity in castration-resistant prostate cancer cells. Biochemical Pharmacology, 2014, 87, 579-597.	4.4	83
14	Inhibition of telomerase activity by a cell-penetrating peptide nucleic acid construct in human melanoma cells. FEBS Letters, 2000, 473, 241-248.	2.8	82
15	MicroRNAs as new therapeutic targets and tools in cancer. Expert Opinion on Therapeutic Targets, 2011, 15, 265-279.	3.4	81
16	Antisense oligonucleotide-mediated inhibition of hTERT, but not hTERC, induces rapid cell growth decline and apoptosis in the absence of telomere shortening in human prostate cancer cells. European Journal of Cancer, 2005, 41, 624-634.	2.8	80
17	miR-205 regulates basement membrane deposition in human prostate: implications for cancer development. Cell Death and Differentiation, 2012, 19, 1750-1760.	11.2	77
18	Targeting Loop Adenines in Gâ€Quadruplex by a Selective Oxirane. Chemistry - A European Journal, 2013, 19, 78-81.	3.3	77

#	Article	IF	CITATIONS
19	Silencing of survivin gene by small interfering RNAs produces supra-additive growth suppression in combination with 17-allylamino-17-demethoxygeldanamycin in human prostate cancer cells. Molecular Cancer Therapeutics, 2006, 5, 179-186.	4.1	73
20	Ribozyme-mediated attenuation of survivin expression sensitizes human melanoma cells to cisplatin-induced apoptosis. Journal of Clinical Investigation, 2002, 109, 285-286.	8.2	73
21	Inhibition of Telomerase Activity by a Hammerhead Ribozyme Targeting the RNA Component of Telomerase in Human Melanoma Cells. Journal of Investigative Dermatology, 2000, 114, 259-267.	0.7	68
22	Emerging Role of G-quadruplex DNA as Target in Anticancer Therapy. Current Pharmaceutical Design, 2017, 22, 6612-6624.	1.9	67
23	miR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair through PKCε and ZEB1 inhibition. Journal of Experimental and Clinical Cancer Research, 2019, 38, 51.	8.6	64
24	Ribozyme-mediated down-regulation of survivin expression sensitizes human melanoma cells to to topotecan in vitro and in vivo. Carcinogenesis, 2004, 25, 1129-1136.	2.8	57
25	Photochemical internalization of a peptide nucleic acid targeting the catalytic subunit of human telomerase. Cancer Research, 2003, 63, 3490-4.	0.9	55
26	Towards the definition of prostate cancer-related microRNAs: where are we now?. Trends in Molecular Medicine, 2009, 15, 381-390.	6.7	54
27	Naphthalene diimides as red fluorescent pH sensors for functional cell imaging. Organic and Biomolecular Chemistry, 2015, 13, 570-576.	2.8	54
28	Autophagy acts as a safeguard mechanism against G-quadruplex ligand-mediated DNA damage. Autophagy, 2012, 8, 1185-1196.	9.1	51
29	Water-soluble isoindolo[2,1-a]quinoxalin-6-imines: InÂvitro antiproliferative activity and molecular mechanism(s) of action. European Journal of Medicinal Chemistry, 2015, 94, 149-162.	5.5	51
30	Ribozyme-mediated attenuation of survivin expression sensitizes human melanoma cells to cisplatin-induced apoptosis. Journal of Clinical Investigation, 2002, 109, 285-286.	8.2	51
31	Apollon gene silencing induces apoptosis in breast cancer cells through p53 stabilisation and caspase-3 activation. British Journal of Cancer, 2009, 100, 739-746.	6.4	47
32	Down-regulation of human telomerase reverse transcriptase through specific activation of RNAi pathway quickly results in cancer cell growth impairment. Biochemical Pharmacology, 2007, 73, 1703-1714.	4.4	45
33	Telomeres as targets for anticancer therapies. Expert Opinion on Therapeutic Targets, 2011, 15, 579-593.	3.4	45
34	On the Road to Fight Cancer: The Potential of G-Quadruplex Ligands as Novel Therapeutic Agents. International Journal of Molecular Sciences, 2021, 22, 5947.	4.1	45
35	Inhibition of telomerase activity by geldanamycin and 17-allylamino, 17-demethoxygeldanamycin in human melanoma cells. Carcinogenesis, 2003, 24, 851-859.	2.8	43
36	Dimerizable Redox-Sensitive Triazine-Based Cationic Lipids for in vitro Gene Delivery. ChemMedChem, 2007, 2, 292-296.	3.2	38

#	Article	IF	CITATIONS
37	Redox-Sensitive PEG–Polypeptide Nanoporous Particles for Survivin Silencing in Prostate Cancer Cells. Biomacromolecules, 2015, 16, 2168-2178.	5.4	38
38	Possible Regulation of Telomerase Activity by Transcription and Alternative Splicing of Telomerase Reverse Transcriptase in Human Melanoma. Journal of Investigative Dermatology, 2001, 116, 867-873.	0.7	37
39	Targeting the telosome: Therapeutic implications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 309-316.	3.8	37
40	Targeting Telomerase by Antisense-Based Approaches: Perspectives for New Anti-Cancer Therapies. Current Pharmaceutical Design, 2005, 11, 1105-1117.	1.9	30
41	Nestling telomere length does not predict longevity, but covaries with adult body size in wild barn swallows. Biology Letters, 2013, 9, 20130340.	2.3	30
42	Oligomer-mediated modulation of hTERT alternative splicing induces telomerase inhibition and cell growth decline in human prostate cancer cells. Cellular and Molecular Life Sciences, 2004, 61, 1764-74.	5.4	29
43	The Role of Alternative Lengthening of Telomeres Mechanism in Cancer: Translational and Therapeutic Implications. Cancers, 2020, 12, 949.	3.7	29
44	Attenuation of telomerase activity does not increase sensitivity of human melanoma cells to anticancer agents. European Journal of Cancer, 2000, 36, 2137-2145.	2.8	28
45	Assessment of gene promoter G-quadruplex binding and modulation by a naphthalene diimide derivative in tumor cells. International Journal of Oncology, 2015, 46, 369-380.	3.3	28
46	Down-Regulation of the Androgen Receptor by G-Quadruplex Ligands Sensitizes Castration-Resistant Prostate Cancer Cells to Enzalutamide. Journal of Medicinal Chemistry, 2018, 61, 8625-8638.	6.4	28
47	Telomerase Activity in Benign and Malignant Breast Lesions: a Pilot Prospective Study on Fine-Needle Aspirates. Journal of the National Cancer Institute, 1998, 90, 537-539.	6.3	25
48	Ribozyme-mediated inhibition of PKC? sensitizes androgen-independent human prostate cancer cells to cisplatin-induced apoptosis. Prostate, 2003, 54, 133-143.	2.3	24
49	Photochemically enhanced delivery of a cell-penetrating peptide nucleic acid conjugate targeting human telomerase reverse transcriptase: effects on telomere status and proliferative potential of human prostate cancer cells. Cell Proliferation, 2007, 40, 905-920.	5.3	24
50	Synergistic Cooperation Between Sunitinib and Cisplatin Promotes Apoptotic Cell Death in Human Medullary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 498-509.	3.6	23
51	miR-380-5p-mediated repression of TEP1 and TSPYL5 interferes with telomerase activity and favours the emergence of an "ALT-like―phenotype in diffuse malignant peritoneal mesothelioma cells. Journal of Hematology and Oncology, 2017, 10, 140.	17.0	23
52	Targeting of <i>RET</i> oncogene by naphthalene diimide-mediated gene promoter G-quadruplex stabilization exerts anti-tumor activity in oncogene-addicted human medullary thyroid cancer. Oncotarget, 2016, 7, 49649-49663.	1.8	22
53	Macrophage populations of different origins have distinct susceptibilities to lipid peroxidation induced by Î ² -haematin (malaria pigment). FEBS Letters, 1998, 433, 215-218.	2.8	21
54	Targetin g Human Tel omerase by Antisens e Oligonucleotides and Ribozymes. Anti-Cancer Agents in Medicinal Chemistry, 2002, 2, 605-612.	7.0	21

#	Article	IF	CITATIONS
55	Telomere maintenance mechanisms in malignant peripheral nerve sheath tumors: expression and prognostic relevance. Neuro-Oncology, 2012, 14, 736-744.	1.2	21
56	Naphthalene diimideâ€derivatives Gâ€quadruplex ligands induce cell proliferation inhibition, mild telomeric dysfunction and cell cycle perturbation in U251MG glioma cells. FEBS Journal, 2018, 285, 3769-3785.	4.7	21
57	Comparative Assessment of Antitumor Effects and Autophagy Induction as a Resistance Mechanism by Cytotoxics and EZH2 Inhibition in INI1-Negative Epithelioid Sarcoma Patient-Derived Xenograft. Cancers, 2019, 11, 1015.	3.7	21
58	miR-342 overexpression results in a synthetic lethal phenotype in <i>BRCA1</i> -mutant HCC1937 breast cancer cells. Oncotarget, 2016, 7, 18594-18604.	1.8	20
59	Validation of Telomerase and Survivin as Anticancer Therapeutic Targets Using Ribozymes and Small-Interfering RNAs. , 2007, 361, 239-264.		17
60	Remarkable interference with telomeric function by a G-quadruplex selective bisantrene regioisomer. Biochemical Pharmacology, 2010, 79, 1781-1790.	4.4	17
61	Distinct biological responses of metastatic castration resistant prostate cancer cells upon exposure to G-quadruplex interacting naphthalenediimide derivatives. European Journal of Medicinal Chemistry, 2019, 177, 401-413.	5.5	16
62	MicroRNA-dependent Regulation of Telomere Maintenance Mechanisms: A Field as Much Unexplored as Potentially Promising. Current Pharmaceutical Design, 2014, 20, 6404-6421.	1.9	14
63	Telomerase activity and telomere length in human ovarian cancer and melanoma cell lines: correlation with sensitivity to DNA damaging agents International Journal of Oncology, 2000, 16, 995-1002.	3.3	13
64	RNA Interference-Mediated Validation of Survivin and Apollon/BRUCE as New Therapeutic Targets for Cancer Therapy. Current Topics in Medicinal Chemistry, 2012, 12, 69-78.	2.1	12
65	The Oncogenic Signaling Pathways in BRAF-Mutant Melanoma Cells are Modulated by Naphthalene Diimide-Like G-Quadruplex Ligands. Cells, 2019, 8, 1274.	4.1	12
66	RNA Interference-Mediated Validation of Genes Involved in Telomere Maintenance and Evasion of Apoptosis as Cancer Therapeutic Targets. Methods in Molecular Biology, 2009, 487, 1-28.	0.9	12
67	Double stranded promoter region of BRAF undergoes to structural rearrangement in nearly physiological conditions. FEBS Letters, 2015, 589, 2117-2123.	2.8	11
68	Unravelling "off-target―effects of redox-active polymers and polymer multilayered capsules in prostate cancer cells. Nanoscale, 2015, 7, 6261-6270.	5.6	9
69	Synthesis and Superpotent Anticancer Activity of Tubulysins Carrying Nonâ€hydrolysable Nâ€&ubstituents on Tubuvaline. Chemistry - A European Journal, 2017, 23, 5842-5850.	3.3	9
70	CPAM type 2-derived mesenchymal stem cells: Malignancy risk study in a 14-month-old boy. Pediatric Pulmonology, 2017, 52, 990-999.	2.0	8
71	Luminescent dinuclear rhenium(I) PNA conjugates for microRNA-21 targeting: Synthesis, chemico-physical and biological characterization. Journal of Organometallic Chemistry, 2019, 887, 32-39.	1.8	7
72	Approaches for the Inhibition of Human Telomerase Based on the Use of Peptide Nucleic Acids and Hammerhead Ribozymes. Mini-Reviews in Medicinal Chemistry, 2003, 3, 51-60.	2.4	6

#	Article	IF	CITATIONS
73	MicroRNAs and the Response of Prostate Cancer to Anti-Cancer Drugs. Current Drug Targets, 2016, 17, 257-265.	2.1	5
74	Therapeutic Uses of Peptide Nucleic Acids (PNA) in Oncology. , 2006, , 171-180.		2
75	Therapeutic uses of peptide nucleic acids (PNA) in oncology. International Journal of Peptide Research and Therapeutics, 2003, 10, 287-296.	1.9	1
76	Targeting Survivin in Cancer Therapy: Pre-clinical Studies. , 2010, , 147-168.		1
77	Editorial (Thematic Issue: Targeting Telomere Maintenance Mechanisms in Cancer Therapy). Current Pharmaceutical Design, 2014, 20, 6359-6360.	1.9	1
78	Telomere as a Therapeutic Target in Dedifferentiated Liposarcoma. Cancers, 2022, 14, 2624.	3.7	1
79	Schedule-dependent modulation of idarubicin cytotoxicity by lonidamine in human lymphoma cell lines. International Journal of Oncology, 1997, 11, 675-9.	3.3	0
80	Therapeutic uses of peptide nucleic acids (PNA) in oncology. International Journal of Peptide Research and Therapeutics, 2003, 10, 287-296.	0.1	0
81	Use of ribozymes in validation of targets involved in tumor progression. Drug Discovery Today: Technologies, 2004, 1, 119-124.	4.0	0
82	Therapeutic uses of peptide nucleic acids (PNA) in oncology. International Journal of Peptide Research and Therapeutics, 2005, 10, 287-296.	1.9	0
83	MicroRNAs in Prostate Cancer: A Possible Role as Novel Biomarkers and Therapeutic Targets?. , 2011, , 145-162.		О