Shu-Yu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3262905/publications.pdf

Version: 2024-02-01

94 6,286 papers citations

40 77
h-index g-index

127 127 all docs citations

127 times ranked 4785 citing authors

#	Article	IF	CITATIONS
1	Bromine and oxygen redox species mediated highly selective electro-epoxidation of styrene. Organic Chemistry Frontiers, 2022, 9, 436-444.	2.3	14
2	Highly Site―and Enantioselective N—H Functionalization of <scp><i>N</i>à€Monosubstituted</scp> Aniline Derivatives Affording Pyrazolones Bearing a Quaternary Stereocenter. Chinese Journal of Chemistry, 2022, 40, 1144-1148.	2.6	4
3	Molecular basis for cell-wall recycling regulation by transcriptional repressor MurR in <i>Escherichia coli</i> . Nucleic Acids Research, 2022, 50, 5948-5960.	6.5	3
4	Bioinspired Palladiumâ€Catalyzed Intramolecular C(sp ³)â^'H Activation for the Collective Synthesis of Proline Natural Products. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
5	Bioinspired Palladiumâ€Catalyzed Intramolecular C(sp ³)â^'H Activation for the Collective Synthesis of Proline Natural Products. Angewandte Chemie, 2022, 134, .	1.6	3
6	Chiral Phosphoric Acid-Catalyzed Enantioselective Dearomative Electrophilic Hydrazination: Access to Chiral Aza-Quaternary Carbon Indolenines. ACS Catalysis, 2022, 12, 7511-7516.	5 . 5	17
7	Co-Catalyzed Direct Regio- and Enantioselective Intermolecular Î ³ -Amination of <i>N</i> -Acylpyrazoles. Organic Letters, 2021, 23, 25-30.	2.4	12
8	Palladium Catalyzed Aminocarbonylation of Benzylic Ammonium Triflates with Nitroarenes: Synthesis of Phenylacetamides. Advanced Synthesis and Catalysis, 2021, 363, 2061-2065.	2.1	16
9	DFT and experimental studies on Rh(III)-catalyzed dual directing-groups-assisted [3+2] annulation and ring-opening of N‑aryloxyacetamides with 1-(phenylethynyl)cycloalkanol. Tetrahedron Letters, 2021, 69, 152979.	0.7	3
10	Paired Electrolysis Enabled Ni-Catalyzed Unconventional Cascade Reductive Thiolation Using Sulfinates. Journal of Organic Chemistry, 2021, 86, 15326-15334.	1.7	15
11	Organocatalytic Direct Asymmetric Indolization from Anilines by Enantioselective [3 + 2] Annulation. Organic Letters, 2021, 23, 8434-8438.	2.4	15
12	Base-Promoted Cobalt-Catalyzed Regio- and Enantioselective <i>para</i> -Friedel–Crafts Alkylation of Aniline Derivatives. Organic Letters, 2021, 23, 9353-9359.	2.4	15
13	A dienamine-mediated deconjugative addition/cyclization cascade of \hat{l}^3 , \hat{l}^3 -disubstituted enals with carboxylic acid-activated enones: a rapid access to highly functionalized \hat{l}^3 -lactones. Organic Chemistry Frontiers, 2020, 7, 571-577.	2.3	4
14	High heat-resistant polyimide films containing quinoxaline moiety for flexible substrate applications. Polymer, 2020, 209, 122963.	1.8	31
15	Fe-Catalyzed Sequential C(sp ³)–H/N–H Annulation of 2-Methylindoles with Ethyl Trifluoropyruvate at Room Temperature: Construction of Pyrrolo[1,2-α]indoles. Organic Letters, 2020, 22, 4716-4720.	2.4	15
16	Organocatalytic Enantioselective Construction of Heterocycle-Substituted Styrenes with Chiral Atropisomerism. Organic Letters, 2020, 22, 2448-2453.	2.4	43
17	Highly Chemo-, Site-, and Enantioseletive <i>para</i> C–H Aminoalkylation of <i>N</i> -Monosubstituted Aniline Derivatives Affording 3-Amino-2-oxindoles. Organic Letters, 2020, 22, 2173-2177.	2.4	32
18	Total Synthesis of Fawcettimine-Type Alkaloid, Lycojaponicumin A. Organic Letters, 2020, 22, 3775-3779.	2.4	16

#	Article	IF	Citations
19	Highly atroposelective synthesis of nonbiaryl naphthalene-1,2-diamine N-C atropisomers through direct enantioselective C-H amination. Nature Communications, 2019, 10, 3063.	5.8	7 5
20	Lewis Base/BrÃ,nsted Acid Coâ€catalyzed Enantioselective Sulfenylation/Semipinacol Rearrangement of Di―and Trisubstituted Allylic Alcohols. Angewandte Chemie - International Edition, 2019, 58, 12491-12496.	7.2	54
21	Lewis Base/BrÃ,nsted Acid Coâ€catalyzed Enantioselective Sulfenylation/Semipinacol Rearrangement of Di†and Trisubstituted Allylic Alcohols. Angewandte Chemie, 2019, 131, 12621-12626.	1.6	11
22	Remote C6-Enantioselective C–H Functionalization of 2,3-Disubstituted Indoles through the Dual H-Bonds and π–π Interaction Strategy Enabled by CPAs. Organic Letters, 2019, 21, 8662-8666.	2.4	39
23	Cobalt-Catalyzed <i>Ortho</i> -C(sp ²)â€"H Amidation of Benzaldehydes with Dioxazolones Using Transient Directing Groups. Organic Letters, 2019, 21, 7342-7345.	2.4	42
24	Computational and experimental studies on copper-mediated selective cascade C–H/N–H annulation of electron-deficient acrylamide with arynes. Chemical Communications, 2019, 55, 755-758.	2.2	33
25	Copperâ€Complexâ€Catalyzed Asymmetric Aerobic Oxidative Crossâ€Coupling of 2â€Naphthols: Enantioselective Synthesis of 3,3′â€5ubstituted C 1 â€Symmetric BINOLs. Angewandte Chemie, 2019, 131, 11139-11143.	1.6	46
26	Copperâ€Complexâ€Catalyzed Asymmetric Aerobic Oxidative Crossâ€Coupling of 2â€Naphthols: Enantioselective Synthesis of 3,3′â€Substituted <i>C₁</i> â€Symmetric BINOLs. Angewandte Chemie - International Edition, 2019, 58, 11023-11027.	7.2	73
27	Design and synthesis of a novel quinoxaline diamine and its polyimides with high-Tg and red color. Polymer, 2019, 179, 121612.	1.8	24
28	Electrochemical halogenation/semi-pinacol rearrangement of allylic alcohols using inorganic halide salt: an eco-friendly route to the synthesis of \hat{l}^2 -halocarbonyls. Green Chemistry, 2019, 21, 4014-4019.	4.6	49
29	Asymmetric Organocatalytic Synthesis of 2,3-Allenamides from Hydrogen-Bond-Stabilized Enynamides. Organic Letters, 2019, 21, 2468-2472.	2.4	26
30	Dual Directing-Groups-Assisted Redox-Neutral Annulation and Ring Opening of <i>N</i> -Aryloxyacetamides with 1-Alkynylcyclobutanols via Rhodium(III)-Catalyzed C–H/C–C Activations. Organic Letters, 2019, 21, 2823-2827.	2.4	47
31	Asymmetric <i>N</i> -Hydroxyalkylation of Indoles with Ethyl Glyoxalates Catalyzed by a Chiral Phosphoric Acid: Highly Enantioselective Synthesis of Chiral <i>N,O</i> -Aminal Indole Derivatives. Organic Letters, 2019, 21, 2795-2799.	2.4	27
32	Silver-Catalyzed para-Selective C–H Amination of 1-NaphthylÂamides with Azodicarboxylates at Room Temperature. Synthesis, 2019, 51, 2697-2704.	1.2	2
33	Electrochemical Semipinacol Rearrangements of Allylic Alcohols: Construction of All-Carbon Quaternary Stereocenters. Organic Letters, 2019, 21, 2536-2540.	2.4	74
34	Recent progress in the isolation, bioactivity, biosynthesis, and total synthesis of natural spiroketals. Natural Product Reports, 2018, 35, 75-104.	5.2	78
35	Mechanistic insights into staphylopine-mediated metal acquisition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3942-3947.	3.3	50
36	Copper-Mediated Cascade C–H/N–H Annulation of Indolocarboxamides with Arynes: Construction of Tetracyclic Indoloquinoline Alkaloids. Organic Letters, 2018, 20, 220-223.	2.4	66

#	Article	IF	Citations
37	Rhodium(III)-Catalyzed Redox-Neutral Cascade [3 + 2] Annulation of <i>N</i> Phenoxyacetamides with Propiolates via Câ€"H Functionalization/Isomerization/Lactonization. Organic Letters, 2018, 20, 7131-7136.	2.4	45
38	Asymmetric intramolecular Friedel–Crafts reaction catalyzed by a spiropyrrolidine organocatalyst: Enantioselective construction of indolizine and azepine frameworks. Tetrahedron Letters, 2018, 59, 4015-4018.	0.7	12
39	Metal-Controlled, Regioselective, Direct Intermolecular \hat{l}_{\pm} - or \hat{l}^3 -Amination with Azodicarboxylates. Organic Letters, 2018, 20, 3469-3472.	2.4	26
40	Electrophilic Trifluoromethylthiolation/Semipinacol Rearrangement: Preparation of \hat{l}^2 -SCF3 Carbonyl Compounds with \hat{l}_{\pm} -Quaternary Carbon Center. Organic Letters, 2018, 20, 4227-4230.	2.4	40
41	Experimental and computational studies on H ₂ O-promoted, Rh-catalyzed transient-ligand-free <i>ortho</i> -C(sp ²)â€"H amidation of benzaldehydes with dioxazolones. Chemical Communications, 2018, 54, 8889-8892.	2.2	35
42	A Facile Approach to Oximes and Ethers by a Tandem NO ⁺ â€Initiated Semipinacol Rearrangement and Hâ€Elimination. Angewandte Chemie, 2018, 130, 13376-13380.	1.6	7
43	A Facile Approach to Oximes and Ethers by a Tandem NO ⁺ â€Initiated Semipinacol Rearrangement and Hâ€Elimination. Angewandte Chemie - International Edition, 2018, 57, 13192-13196.	7.2	26
44	Transition Metalâ€Controlled Direct Regioselective Intermolecular Amidation of Câ^'H Bonds with Azodicarboxylates: Scope, Mechanistic Studies, and Applications. Advanced Synthesis and Catalysis, 2018, 360, 4205-4214.	2.1	13
45	Palladium-Catalyzed Direct Intermolecular Amination of Unactivated Methylene C(sp ³)–H Bonds with Azodiformates via Bidentate-Chelation Assistance. ACS Catalysis, 2017, 7, 2042-2046.	5.5	46
46	Copper-Catalyzed Selective <i>ortho</i> -C–H/N–H Annulation of Benzamides with Arynes: Synthesis of Phenanthridinone Alkaloids. Organic Letters, 2017, 19, 1764-1767.	2.4	77
47	Stereoselective Synthesis of <i>Z</i> -Vinylsilanes via Palladium-Catalyzed Direct Intermolecular Silylation of C(sp ²)–H Bonds. Organic Letters, 2017, 19, 5216-5219.	2.4	46
48	Catalytic Asymmetric Cascade Using Spiro-Pyrrolidine Organocatalyst: Efficient Construction of Hydrophenanthridine Derivatives. Organic Letters, 2017, 19, 6618-6621.	2.4	23
49	Palladium-catalyzed direct intermolecular silylation of remote unactivated C(sp ³)–H bonds. Chemical Communications, 2016, 52, 13151-13154.	2.2	62
50	Gold(I)/Copper(II)â€Cocatalyzed Tandem Cyclization/Semipinacol Reaction: Construction of 6â€ <i>Aza/Oxa</i> â€Spiro[4.5]decane Skeletons and Formal Synthesis of (±)â€Halichlorine. Advanced Synthesis and Catalysis, 2015, 357, 747-752.	2.1	20
51	Tandem C–H oxidation/cyclization/rearrangement and its application to asymmetric syntheses of (â~')-brussonol and (â~')-przewalskine E. Nature Communications, 2015, 6, 7332.	5.8	40
52	Palladium-catalyzed alkylation of unactivated C(sp ³)â€"H bonds with primary alkyl iodides at room temperature: facile synthesis of β-alkyl α-amino acids. Organic Chemistry Frontiers, 2015, 2, 1318-1321.	2.3	35
53	Pd-Catalyzed Monoselective <i>ortho</i> -C–H Alkylation of <i>N</i> -Quinolyl Benzamides: Evidence for Stereoretentive Coupling of Secondary Alkyl Iodides. Journal of the American Chemical Society, 2015, 137, 531-539.	6.6	152
54	A Synthetic Approach for Constructing the 3/6/6/5â€Fused Tetracyclic Skeleton of Tenuipesine A. Chemistry - an Asian Journal, 2014, 9, 724-727.	1.7	4

#	Article	IF	Citations
55	Palladium-Catalyzed Stereoretentive Olefination of Unactivated C(sp ³)–H Bonds with Vinyl lodides at Room Temperature: Synthesis of β-Vinyl α-Amino Acids. Organic Letters, 2014, 16, 6260-6263.	2.4	108
56	Total Synthesis of Hibispeptin A via Pd-Catalyzed C(sp ³)â€"H Arylation with Sterically Hindered Aryl Iodides. Organic Letters, 2014, 16, 6488-6491.	2.4	80
57	Palladiumâ€Catalyzed Picolinamideâ€Directed Acetoxylation of Unactivated γâ€C(<i>sp</i> ³)H Bonds of Alkylamines. Advanced Synthesis and Catalysis, 2014, 356, 1544-1548.	2.1	80
58	Palladium-catalyzed trifluoroacetate-promoted mono-arylation of the \hat{l}^2 -methyl group of alanine at room temperature: synthesis of \hat{l}^2 -arylated \hat{l}_2 -amino acids through sequential Câ \in "H functionalization. Chemical Science, 2014, 5, 3952.	3.7	124
59	Copper-Catalyzed Carboxamide-Directed <i>Ortho</i> Amination of Anilines with Alkylamines at Room Temperature. Organic Letters, 2014, 16, 1764-1767.	2.4	187
60	Palladium-catalyzed picolinamide-directed halogenation of ortho C–H bonds of benzylamine substrates. Tetrahedron, 2014, 70, 4197-4203.	1.0	39
61	Stereoselective Synthesis of β-Alkylated α-Amino Acids via Palladium-Catalyzed Alkylation of Unactivated Methylene C(sp ³)â€"H Bonds with Primary Alkyl Halides. Journal of the American Chemical Society, 2013, 135, 12135-12141.	6.6	315
62	Use of a Readily Removable Auxiliary Group for the Synthesis of Pyrrolidones by the Palladiumâ€Catalyzed Intramolecular Amination of Unactivated γ C(sp ³)H Bonds. Angewandte Chemie - International Edition, 2013, 52, 11124-11128.	7.2	275
63	Toward the natural didemnaketal A: total synthesis of the isomer of didemnaketal A. Tetrahedron Letters, 2013, 54, 6514-6516.	0.7	4
64	Palladium-Catalyzed Picolinamide-Directed Alkylation of Unactivated C(sp ³)–H Bonds with Alkyl Iodides. Journal of the American Chemical Society, 2013, 135, 2124-2127.	6.6	357
65	lodination of Remote <i>Ortho</i> -C–H Bonds of Arenes via Directed S _E Ar: A Streamlined Synthesis of Tetrahydroquinolines. Organic Letters, 2013, 15, 3440-3443.	2.4	48
66	Cascade Oxidative Dearomatization/Semipinacol Rearrangement: An Approach to 2â€Spirocycloâ€3â€oxindole Derivatives. Chemistry - an Asian Journal, 2013, 8, 883-887.	1.7	39
67	Direct Syntheses of Spiro―and Fusedâ€Hydrofurans by a Tunable Tandem Semipinacol Rearrangement/Oxaâ€Michael Addition Protocol. Chemistry - A European Journal, 2013, 19, 5246-5249.	1.7	15
68	Synthesis of phenanthridines via palladium-catalyzed picolinamide-directed sequential C–H functionalization. Beilstein Journal of Organic Chemistry, 2013, 9, 891-899.	1.3	32
69	Tandem Semipinacol-Type 1,2-Carbon Migration/Aldol Reaction toward the Construction of [5–6–7] All-Carbon Tricyclic Core of <i>Calyciphylline</i>	2.4	49
70	Highly Efficient Syntheses of Azetidines, Pyrrolidines, and Indolines via Palladium Catalyzed Intramolecular Amination of C(sp ³)â€"H and C(sp ²)â€"H Bonds at γ and δPositions. Journal of the American Chemical Society, 2012, 134, 3-6.	6.6	515
71	Efficient Alkyl Ether Synthesis via Palladium-Catalyzed, Picolinamide-Directed Alkoxylation of Unactivated C(sp ³)–H and C(sp ²)–H Bonds at Remote Positions. Journal of the American Chemical Society, 2012, 134, 7313-7316.	6.6	321
72	Organocatalytic Asymmetric Direct Cï£;H Functionalization of Ethers: A Highly Efficient Approach to Chiral Spiroethers. Angewandte Chemie - International Edition, 2012, 51, 8811-8815.	7.2	111

#	Article	IF	CITATIONS
73	Formal Synthesis of (â^²)â€Cephalotaxine Based on a Tandem Hydroamination/Semipinacol Rearrangement Reaction. Chemistry - an Asian Journal, 2012, 7, 894-898.	1.7	61
74	Studies on the Total Synthesis of 8-epi-Liphagal. Acta Chimica Sinica, 2012, 70, 2232.	0.5	6
75	Direct Sp3α-C–H activation and functionalization of alcohol and ether. Chemical Society Reviews, 2011, 40, 1937.	18.7	446
76	Development of the Intramolecular Prins Cyclization/Schmidt Reaction for the Construction of the Azaspiro [4,4] nonane: Application to the Formal Synthesis of (\hat{A}_{\pm}) -Stemonamine. Organic Letters, 2011, 13, 724-727.	2.4	67
77	Selective fluorescent probes for live-cell monitoring of sulphide. Nature Communications, 2011, 2, 495.	5.8	472
78	Chiral BrÃ,nsted Acidâ€Promoted Enantioselective Desymmetrization in an Intramolecular Schmidt Reaction of Symmetric Azido 1,3â€Hexanediones: Asymmetric Synthesis of Azaquaternary Pyrroloazepine Skeletons. Chemistry - an Asian Journal, 2011, 6, 1344-1347.	1.7	25
79	Ironâ€Catalyzed C(sp ³)C(sp ³) Bond Formation through C(sp ³)H Functionalization: A Crossâ€Coupling Reaction of Alcohols with Alkenes. Angewandte Chemie - International Edition, 2009, 48, 8761-8765.	7.2	132
80	A RhCl(PPh3)3/BF3·OEt2 co-promoted direct C–C cross-coupling of alcohols at β-position with aldehydes. Tetrahedron Letters, 2009, 50, 4178-4181.	0.7	12
81	Crossâ€Coupling Reaction between Alcohols through sp ³ CH Activation Catalyzed by a Ruthenium/Lewis Acid System. Chemistry - A European Journal, 2008, 14, 10201-10205.	1.7	48
82	Palladiumâ€Catalyzed/Lewis Acidâ€Promoted Alkene Dimerization and Crossâ€Coupling with Alcohols <i>via</i> CH Bond Activation. Advanced Synthesis and Catalysis, 2008, 350, 552-556.	2.1	53
83	A Direct CC Crossâ€Coupling of Alcohols at the βâ€Position with Aldehydes under Coâ€Promotion of Tris(triphenylphosphine)rhodium Chloride/Boron Trifuoride Etherate. Advanced Synthesis and Catalysis, 2008, 350, 2189-2193.	2.1	5
84	A coupling reaction between tetrahydrofuran and olefins by Rh-catalyzed/Lewis acid-promoted C–H activation. Tetrahedron Letters, 2008, 49, 4652-4654.	0.7	16
85	Tandem Aziridination/Rearrangement Reaction of Allylic Alcohols: An Efficient Approach to 2-Quaternary Mannich Bases. Organic Letters, 2008, 10, 4943-4946.	2.4	32
86	Prolinamide/PPTS-Catalyzed Hajos-Parrish Annulation: Efficient Approach to the Tricyclic Core of Cylindricine-Type Alkaloids. Synlett, 2008, 2008, 2831-2835.	1.0	11
87	Asymmetric Synthesis of the C(17)–C(28) Subunit of Didemnaketal B. Chinese Journal of Chemistry, 2007, 25, 1357-1362.	2.6	4
88	An alternative synthetic approach towards erythrinan and homoerythrinan alkaloids by tandem semipinacol/intramolecular Schmidt reaction. Chinese Chemical Letters, 2007, 18, 917-919.	4.8	5
89	General and Efficient Strategy for Erythrinan and Homoerythrinan Alkaloids:  Syntheses of (±)-3-Demethoxyerythratidinone and (±)-Erysotramidine. Organic Letters, 2006, 8, 2373-2376.	2.4	53
90	Quinine/selectfluor combination induced asymmetric semipinacol rearrangement of allylic alcohols: an effective and enantioselective approach to \hat{l} ±-quaternary \hat{l} 2-fluoro aldehydes. Chemical Communications, 2005, , 5580.	2.2	77

#	Article	IF	CITATION
91	An Efficient Total Synthesis of (\hat{A}_{\pm}) -Lycoramine. Organic Letters, 2004, 6, 4691-4694.	2.4	66
92	First Synthesis of (+)â€2,14â€Deoxyalatol from αâ€Santonin. Chinese Journal of Chemistry, 2004, 22, 377-383.	2.6	3
93	A General Efficient Strategy forcis-3a-Aryloctahydroindole Alkaloids via Stereocontrolled ZnBr2-Catalyzed Rearrangement of 2,3-Aziridino Alcohols. Organic Letters, 2003, 5, 2319-2321.	2.4	46
94	Using Computational Chemistry to Improve Students' Multidimensional Understanding of Complex Electrophilic Aromatic Substitution Reactions: Further Analysis of the Solvent Effect, Temperature Influence, and Kinetic Behaviors. Journal of Chemical Education, 0, , .	1.1	7