List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3262894/publications.pdf Version: 2024-02-01

WELMING SUN

#	Article	IF	CITATIONS
1	On the Potential Application of Superalkali Clusters in Designing Novel Alkalides with Large Nonlinear Optical Properties. Inorganic Chemistry, 2014, 53, 6170-6178.	4.0	125
2	Coordination mode engineering in stacked-nanosheet metal–organic frameworks to enhance catalytic reactivity and structural robustness. Nature Communications, 2019, 10, 2779.	12.8	89
3	Tunable photoluminescence and spectrum split from fluorinated to hydroxylated graphene. Nanoscale, 2014, 6, 3316.	5.6	84
4	A theoretical study on superalkali-doped nanocages: unique inorganic electrides with high stability, deep-ultraviolet transparency, and a considerable nonlinear optical response. Dalton Transactions, 2016, 45, 7500-7509.	3.3	78
5	Theoretical study on superalkali (Li ₃) in ammonia: novel alkalides with considerably large first hyperpolarizabilities. Dalton Transactions, 2014, 43, 486-494.	3.3	60
6	Designing Aromatic Superatoms. Journal of Physical Chemistry C, 2013, 117, 24618-24624.	3.1	57
7	Rational Design of High-Performance Donor–Linker–Acceptor Hybrids Using a Schiff Base for Enabling Photoinduced Electron Transfer. Analytical Chemistry, 2020, 92, 2019-2026.	6.5	54
8	Effective Extraction of Domoic Acid from Seafood Based on Postsynthetic-Modified Magnetic Zeolite Imidazolate Framework-8 Particles. Analytical Chemistry, 2019, 91, 2418-2424.	6.5	53
9	Can Coinage Metal Atoms Be Capable of Serving as an Excess Electron Source of Alkalides with Considerable Nonlinear Optical Responses?. Inorganic Chemistry, 2017, 56, 4594-4600.	4.0	47
10	Designing Alkalides with Considerable Nonlinear Optical Responses and High Stability Based on the Facially Polarized Janus <i>all</i> - <i>cis</i> -1,2,3,4,5,6-Hexafluorocyclohexane. Organometallics, 2017, 36, 3352-3359.	2.3	47
11	A theoretical study on novel alkaline earth-based excess electron compounds: unique alkalides with considerable nonlinear optical responses. Physical Chemistry Chemical Physics, 2015, 17, 4524-4532.	2.8	41
12	Colorimetric detection of exosomal microRNA through switching the visible-light-induced oxidase mimic activity of acridone derivate. Biosensors and Bioelectronics, 2021, 173, 112834.	10.1	40
13	Stability and Nonlinear Optical Response of Alkalides that Contain a Completely Encapsulated Superalkali Cluster. ChemPhysChem, 2016, 17, 2672-2678.	2.1	39
14	Substituent Effects on the Structural Features and Nonlinear Optical Properties of the Organic Alkalide Li ⁺ (calix[4]pyrrole)Li ^{â^'} . ChemPhysChem, 2013, 14, 408-416.	2.1	38
15	Recent Progress on the Design, Characterization, and Application of Superalkalis. Chemistry - A European Journal, 2019, 25, 9568-9579.	3.3	37
16	Hyperbranched rolling circle amplification (HRCA)-based fluorescence biosensor for ultrasensitive and specific detection of single-nucleotide polymorphism genotyping associated with the therapy of chronic hepatitis B virus infection. Talanta, 2019, 191, 277-282.	5.5	34
17	Unusual Manipulative Effects of Spin Multiplicity and Excess Electron Number on the Structure and Nonlinear Optical Response in New Linear and Cyclic Electride Molecules with Multiexcess Electrons. Journal of Physical Chemistry C, 2014, 118, 23937-23945.	3.1	28
18	Superatom Compounds under Oriented External Electric Fields: Simultaneously Enhanced Bond Energies and Nonlinear Optical Responses. Journal of Physical Chemistry C, 2018, 122, 7867-7876.	3.1	27

#	Article	IF	CITATIONS
19	Coinage metalides: a new class of excess electron compounds with high stability and large nonlinear optical responses. Physical Chemistry Chemical Physics, 2020, 22, 8476-8484.	2.8	26
20	Quasi-Chalcogen Characteristics of Al ₁₂ Be: A New Member of the Three-Dimensional Periodic Table. Journal of Physical Chemistry C, 2016, 120, 2464-2471.	3.1	25
21	All-metal electride molecules CuAg@Ca ₇ M (M = Be, Mg, and Ca) with multi-excess electrons and all-metal polyanions: molecular structures and bonding modes as well as large infrared nonlinear optical responses. Dalton Transactions, 2016, 45, 2656-2665.	3.3	24
22	Trivalent acid radical-centered YLi ₄ ⁺ (Y = PO ₄ , AsO ₄ ,) Tj ETQq Transactions, 2014, 43, 18066-18073.	0 0 0 rgBT 3.3	/Overlock
23	On the feasibility of designing hyperalkali cations using superalkali clusters as ligands. Journal of Chemical Physics, 2016, 145, 194303.	3.0	22
24	Understanding the Linear and Second-Order Nonlinear Optical Properties of UiO-66-Derived Metal–Organic Frameworks: A Comprehensive DFT Study. Journal of Physical Chemistry C, 2020, 124, 11595-11608.	3.1	22
25	Designing a new class of excess electron compounds with unique electronic structures and extremely large non-linear optical responses. New Journal of Chemistry, 2020, 44, 6411-6419.	2.8	22
26	On the Possibility of Using the Jellium Model as a Guide To Design Bimetallic Superalkali Cations. Chemistry - A European Journal, 2019, 25, 4358-4366.	3.3	21
27	An ultrasensitive fluorescence aptasensor for carcino-embryonic antigen detection based on fluorescence resonance energy transfer from upconversion phosphors to Au nanoparticles. Analytical Methods, 2018, 10, 1552-1559.	2.7	20
28	Controllable Synthesis and Biological Application of Schiff Bases from <scp>d</scp> -Glucosamine and Terephthalaldehyde. ACS Omega, 2020, 5, 24864-24870.	3.5	20
29	Decorating Zintl polyanions with alkali metal cations: A novel strategy to design superatom cations with low electron affinity. Journal of Alloys and Compounds, 2018, 740, 400-405.	5.5	19
30	A dual-modal aptasensor based on a multifunctional acridone derivate for exosomes detection. Analytica Chimica Acta, 2022, 1191, 339279.	5.4	19
31	Effect of (super)alkali doping on the electronic and second-order nonlinear optical properties of graphitic C3N4. Optik, 2019, 183, 455-462.	2.9	18
32	A colorimetric sensor for acid phosphatase activity detection based on acridone derivative as visible-light-stimulated oxidase mimic. Analytica Chimica Acta, 2021, 1155, 338357.	5.4	18
33	On the potential of all-boron fullerene B40 as a carrier for anti-cancer drug nitrosourea. Journal of Molecular Liquids, 2021, 342, 117533.	4.9	18
34	Theoretical characterization of a series of N5-based aromatic hyperhalogen anions. Dalton Transactions, 2015, 44, 19901-19908.	3.3	17
35	Nonlinear optical response of endohedral all-metal electride cages 2eâ^'Mg2+(M@E12)2â^'Ca2+ (M = Ni,) Tj ETQq	1_1_0.7843 5.5	314 rgBT /O

Theoretical Study of the Substituent Effects on the Nonlinear Optical Properties of a Roomâ€Temperatureâ€Stable Organic Electride. ChemPhysChem, 2016, 17, 3907-3915.

2.1 15

#	Article	IF	CITATIONS
37	Evolution of the structural and electronic properties of beryllium-doped aluminum clusters: comparison with neutral and cationic aluminum clusters. Physical Chemistry Chemical Physics, 2012, 14, 16467.	2.8	14
38	Acridone Derivate Simultaneously Featuring Multiple Functions and Its Applications. Analytical Chemistry, 2019, 91, 8406-8414.	6.5	14
39	On the Role of Alkaliâ€Metalâ€Like Superatom Al ₁₂ P in Reduction and Conversion of Carbon Dioxide. Chemistry - A European Journal, 2021, 27, 1039-1045.	3.3	14
40	DFT study on the adsorption of 5-fluorouracil on B ₄₀ , B ₃₉ M, and M@B ₄₀ (M = Mg, Al, Si, Mn, Cu, Zn). RSC Advances, 2021, 11, 39508-39517.	3.6	14
41	Electrochemical Trimming of Graphene Oxide Affords Graphene Quantum Dots for Fe ³⁺ Detection. ACS Applied Nano Materials, 2021, 4, 5220-5229.	5.0	13
42	Can Fluorinated Molecular Cages Be Utilized as Building Blocks of Hyperhalogens?. ChemPhysChem, 2016, 17, 1468-1474.	2.1	12
43	Electrochemical synthesis of quinazolinone <i>via</i> I ₂ -catalyzed tandem oxidation in aqueous solution. RSC Advances, 2021, 11, 17721-17726.	3.6	12
44	Cucurbit[<i>n</i>]uril Supramolecular Assemblies-Regulated Charge Transfer for Luminescence Switching of Gold Nanoclusters. Journal of Physical Chemistry Letters, 2022, 13, 419-426.	4.6	12
45	Boronâ€Substituted Coronene: Intriguing Geometric and Electronic Properties, and Large Nonlinear Optical Response. ChemPhysChem, 2018, 19, 2518-2524.	2.1	11
46	Highly Conductive Ligandâ€Free Cs ₂ PtBr ₆ Perovskite Nanocrystals with a Narrow Bandgap and Efficient Photoelectrochemical Performance. Small, 2021, 17, e2102149.	10.0	11
47	Evolution of structure, stability, and nonlinear optical properties of the heterodinuclear CNLin (n=1–10) clusters. Journal of Molecular Graphics and Modelling, 2015, 59, 92-99.	2.4	10
48	Imidazolium ionic liquid bearing urea moiety as a new corrosion inhibitor of mild steel. Journal of Molecular Liquids, 2021, 334, 116484.	4.9	10
49	A upconversion luminescene biosensor based on dual-signal amplification for the detection of short DNA species of c-erbB-2 oncogene. Scientific Reports, 2016, 6, 24813.	3.3	9
50	Synthesis of benzimidazole by mortar–pestle grinding method. Green Chemistry Letters and Reviews, 2021, 14, 612-619.	4.7	9
51	On Close Parallels between the Zintl-Based Superatom Ge ₉ Be and Chalcogen Elements. Inorganic Chemistry, 2021, 60, 3196-3206.	4.0	8
52	Sensitive, Highly Stable, and Anti-Fouling Electrode with Hexanethiol and Poly-A Modification for Exosomal microRNA Detection. Analytical Chemistry, 2022, 94, 5382-5391.	6.5	8
53	Designing an alkali-metal-like superatom Ca ₃ B for ambient nitrogen reduction to ammonia. Physical Chemistry Chemical Physics, 2021, 23, 18908-18915.	2.8	7
54	Electro-oxidative cyclization: access to quinazolinones <i>via</i> K ₂ S ₂ O ₈ without transition metal catalyst and base. RSC Advances, 2021, 11, 31650-31655.	3.6	7

#	Article	IF	CITATIONS
55	Unveiling the potential of superalkali cation Li ₃ ⁺ for capturing nitrogen. Physical Chemistry Chemical Physics, 2020, 22, 26536-26543.	2.8	6
56	Non-metal-mediated <i>N</i> -oxyl radical (TEMPO)-induced acceptorless dehydrogenation of N-heterocycles <i>via</i> electrocatalysis. RSC Advances, 2022, 12, 5483-5488.	3.6	6
57	Codelivery of π–π Stacked Dual Anticancer Drugs Based on Aloe-Derived Nanovesicles for Breast Cancer Therapy. ACS Applied Materials & Interfaces, 2022, 14, 27686-27702.	8.0	6
58	Theoretical investigation of perfect fullerene-like borospherene Ih-B20 protected by alkaline earth metal: multi-layered spherical electride molecules as electric field manipulated second-order nonlinear optical switches. Dalton Transactions, 2020, 49, 15267-15275.	3.3	5
59	On the Interaction between Superatom Al ₁₂ Be and DNA Nucleobases/Base Pairs: Bonding Nature and Potential Applications in O ₂ Activation and CO Oxidation. ACS Omega, 2020, 5, 15325-15334.	3.5	5
60	Electrochemical oxidative synthesis of 2-benzoylquinazolin-4(3 <i>H</i>)-one <i>via</i> C(sp ³)–H amination under metal-free conditions. Catalysis Science and Technology, 2021, 11, 6374-6379.	4.1	5
61	Theoretical study on alkali-metal doped N3H3 complexes: an in-depth understanding of the origin of electride and alkalide and their large nonlinear optical properties. Journal of Molecular Modeling, 2015, 21, 311.	1.8	4
62	Hyperhalogen properties of early-transition-metal borates. RSC Advances, 2017, 7, 47073-47082.	3.6	4
63	Cisplatin under oriented external electric fields: A deeper insight into electrochemotherapy at the molecular level. International Journal of Quantum Chemistry, 2021, 121, e26578.	2.0	4
64	Editorial: Atomic Clusters: Theory & amp; Experiments. Frontiers in Chemistry, 2021, 9, 795113.	3.6	3
65	On the Possibility of Using Aza-Cryptands to Design Superalkalis. Organometallics, 2022, 41, 412-417.	2.3	3
66	Designing Special Nonmetallic Superalkalis Based on a Cage-like Adamanzane Complexant. Frontiers in Chemistry, 2022, 10, 853160.	3.6	3
67	Finding allâ€nonmetal transitionâ€metalâ€ŀike superatom and its magnetic building block. International Journal of Quantum Chemistry, 2018, 118, e25570.	2.0	2
68	A systematic study of structures, stability, and electronic properties of alloy clusters AlBe (nÂ=Â1–12): Comparison with pure beryllium clusters. Polyhedron, 2021, 196, 115005.	2.2	2
69	Small Janus dimer as electric field manipulated molecular clam switch and electric information storage unit. International Journal of Quantum Chemistry, 2019, 119, e26005.	2.0	1
70	Effects of the nanowire length on large second-order nonlinear optical responses: a theoretical investigation of the thinnest doped beryllium nanowires with IR and UV working wavebands. Dalton Transactions, 2021, 50, 4613-4622.	3.3	1
71	DIPEA-induced activation of OH ^{â^'} for the synthesis of amides <i>via</i> photocatalysis. RSC Advances, 2022, 12, 14724-14728.	3.6	1
72	Frontispiece: Recent Progress on the Design, Characterization, and Application of Superalkalis. Chemistry - A European Journal, 2019, 25, .	3.3	0

#	Article	IF	CITATIONS
73	Theoretical investigation on the low-energy isomer identification, structural evolution, stability, and electronic properties of Al10–Be (xÂ= 1–9) nanoalloys. Journal of Molecular Graphics and Modelling, 2019, 87, 56-67.	2.4	О

A Systematic Study of Structures, Stability, and Electronic Properties of Alloy Clusters Alben (N =) Tj ETQq000 rgB $\frac{10}{0.4}$ /Overlock 10 Tf 50