
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3262685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	9.4	1,962
2	Reducing Endogenous Tau Ameliorates Amyloid Â-Induced Deficits in an Alzheimer's Disease Mouse Model. Science, 2007, 316, 750-754.	6.0	1,684
3	Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.	9.4	1,676
4	Aberrant Excitatory Neuronal Activity and Compensatory Remodeling of Inhibitory Hippocampal Circuits in Mouse Models of Alzheimer's Disease. Neuron, 2007, 55, 697-711.	3.8	1,371
5	Rare coding variants in PLCC2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	9.4	783
6	Amyloid-β/Fyn–Induced Synaptic, Network, and Cognitive Impairments Depend on Tau Levels in Multiple Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2011, 31, 700-711.	1.7	582
7	100 Years and Counting: Prospects for Defeating Alzheimer's Disease. Science, 2006, 314, 781-784.	6.0	505
8	The Mitogen-Activated Protein Kinase Cascade Couples PKA and PKC to cAMP Response Element Binding Protein Phosphorylation in Area CA1 of Hippocampus. Journal of Neuroscience, 1999, 19, 4337-4348.	1.7	499
9	Meta-analysis Confirms CR1, CLU, and PICALM as Alzheimer Disease Risk Loci and Reveals Interactions With APOE Genotypes. Archives of Neurology, 2010, 67, 1473.	4.9	376
10	Incidence and impact of subclinical epileptiform activity in Alzheimer's disease. Annals of Neurology, 2016, 80, 858-870.	2.8	373
11	Antiamyloidogenic and Neuroprotective Functions of Cathepsin B: Implications for Alzheimer's Disease. Neuron, 2006, 51, 703-714.	3.8	362
12	Frontotemporal Lobar Degeneration. Archives of Neurology, 2005, 62, 925-30.	4.9	354
13	Common genetic variants in the CLDN2 and PRSS1-PRSS2 loci alter risk for alcohol-related and sporadic pancreatitis. Nature Genetics, 2012, 44, 1349-1354.	9.4	303
14	Frontotemporal dementia progresses to death faster than Alzheimer disease. Neurology, 2005, 65, 719-725.	1.5	267
15	A novel Alzheimer disease locus located near the gene encoding tau protein. Molecular Psychiatry, 2016, 21, 108-117.	4.1	260
16	Mouse models of Alzheimer's disease. Brain Research Bulletin, 2012, 88, 3-12.	1.4	254
17	Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurology, The, 2014, 13, 676-685.	4.9	245
18	ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. Journal of Clinical Investigation, 2014, 124, 981-999.	3.9	225

#	Article	IF	CITATIONS
19	Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Human Molecular Genetics, 2012, 21, 3500-3512.	1.4	198
20	Mice Lacking Ataxin-1 Display Learning Deficits and Decreased Hippocampal Paired-Pulse Facilitation. Journal of Neuroscience, 1998, 18, 5508-5516.	1.7	197
21	A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer's disease. Nature Medicine, 2021, 27, 1187-1196.	15.2	182
22	Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiology of Aging, 2016, 41, 200.e13-200.e20.	1.5	174
23	A Role for Superoxide in Protein Kinase C Activation and Induction of Long-term Potentiation. Journal of Biological Chemistry, 1998, 273, 4516-4522.	1.6	173
24	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	4.5	166
25	Transethnic genomeâ€wide scan identifies novel Alzheimer's disease loci. Alzheimer's and Dementia, 2017, 13, 727-738.	0.4	166
26	Noradrenergic dysfunction in Alzheimer's disease. Frontiers in Neuroscience, 2015, 9, 220.	1.4	153
27	Amyloid-β signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer's disease. Journal of Cell Science, 2013, 126, 1278-1286.	1.2	149
28	¹⁸ Fâ€flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: A multicenter study. Annals of Neurology, 2017, 82, 622-634.	2.8	148
29	Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology, 2012, 79, 221-228.	1.5	144
30	Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102.	4.5	144
31	Transient Activation of Cyclic AMP-dependent Protein Kinase during Hippocampal Long-term Potentiation. Journal of Biological Chemistry, 1996, 271, 30436-30441.	1.6	143
32	Dissociation of Frontotemporal Dementia–Related Deficits and Neuroinflammation in Progranulin Haploinsufficient Mice. Journal of Neuroscience, 2013, 33, 5352-5361.	1.7	132
33	Tau-Dependent Kv4.2 Depletion and Dendritic Hyperexcitability in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2015, 35, 6221-6230.	1.7	126
34	Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer's disease. Brain, 2015, 138, 3716-3733.	3.7	116
35	Progranulin Gene Therapy Improves Lysosomal Dysfunction and Microglial Pathology Associated with Frontotemporal Dementia and Neuronal Ceroid Lipofuscinosis. Journal of Neuroscience, 2018, 38, 2341-2358.	1.7	110
36	A biochemist's view of long-term potentiation Learning and Memory, 1996, 3, 1-24.	0.5	107

#	Article	IF	CITATIONS
37	Loss of Hsp70 Exacerbates Pathogenesis But Not Levels of Fibrillar Aggregates in a Mouse Model of Huntington's Disease. Journal of Neuroscience, 2009, 29, 9104-9114.	1.7	106
38	Abnormal social behaviors in mice lacking Fgf17. Genes, Brain and Behavior, 2008, 7, 344-354.	1.1	103
39	Pathogenic Tau Impairs Axon Initial Segment Plasticity and Excitability Homeostasis. Neuron, 2019, 104, 458-470.e5.	3.8	98
40	Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD. Journal of Experimental Medicine, 2014, 211, 1937-1945.	4.2	94
41	The dendritic hypothesis for Alzheimer's disease pathophysiology. Brain Research Bulletin, 2014, 103, 18-28.	1.4	89
42	β-amyloid redirects norepinephrine signaling to activate the pathogenic GSK3β/tau cascade. Science Translational Medicine, 2020, 12, .	5.8	86
43	Comparison of Pittsburgh compound B and florbetapir in crossâ€sectional and longitudinal studies. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 180-190.	1.2	84
44	Reactions to Multiple Ascending Doses of the Microtubule Stabilizer TPI-287 in Patients With Alzheimer Disease, Progressive Supranuclear Palsy, and Corticobasal Syndrome. JAMA Neurology, 2020, 77, 215.	4.5	81
45	Utility of the global CDR [®] plus NACC FTLD rating and development of scoring rules: Data from the ARTFL/LEFFTDS Consortium. Alzheimer's and Dementia, 2020, 16, 106-117.	0.4	81
46	Mouse models of frontotemporal dementia. Annals of Neurology, 2012, 72, 837-849.	2.8	77
47	Human tau pathology transmits glial tau aggregates in the absence of neuronal tau. Journal of Experimental Medicine, 2020, 217, .	4.2	73
48	Enkephalin Elevations Contribute to Neuronal and Behavioral Impairments in a Transgenic Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2008, 28, 5007-5017.	1.7	70
49	Quantifying Biomarkers of Cognitive Dysfunction and Neuronal Network Hyperexcitability in Mouse Models of Alzheimer's Disease: Depletion of Calcium-Dependent Proteins and Inhibitory Hippocampal Remodeling. Methods in Molecular Biology, 2010, 670, 245-262.	0.4	67
50	Shared Functions of Perirhinal and Parahippocampal Cortices: Implications for Cognitive Aging. Trends in Neurosciences, 2018, 41, 349-359.	4.2	65
51	Seizure resistance without parkinsonism in aged mice after tau reduction. Neurobiology of Aging, 2014, 35, 2617-2624.	1.5	62
52	Tau-Mediated NMDA Receptor Impairment Underlies Dysfunction of a Selectively Vulnerable Network in a Mouse Model of Frontotemporal Dementia. Journal of Neuroscience, 2014, 34, 16482-16495.	1.7	60
53	Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia. Brain, 2017, 140, 1447-1465.	3.7	60
54	Frontotemporal degeneration, the next therapeutic frontier: Molecules and animal models for frontotemporal degeneration drug development. Alzheimer's and Dementia, 2013, 9, 176-188.	0.4	58

#	Article	IF	CITATIONS
55	Protected‧ite Phosphorylation of Protein Kinase C in Hippocampal Longâ€Term Potentiation. Journal of Neurochemistry, 1998, 71, 1075-1085.	2.1	54
56	Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration. Neurology, 2021, 96, e2296-e2312.	1.5	52
57	A Biochemical Blueprint for Long-Term Memory. Learning and Memory, 1999, 6, 381-388.	0.5	52
58	Non-coding and Loss-of-Function Coding Variants in TET2 are Associated with Multiple Neurodegenerative Diseases. American Journal of Human Genetics, 2020, 106, 632-645.	2.6	50
59	MAPK regulation of gene expression in the central nervous system. Acta Neurobiologiae Experimentalis, 2000, 60, 377-94.	0.4	50
60	The advantages of frontotemporal degeneration drug development (partÂ2Âof frontotemporal) Tj ETQq0 0 0 r	gBT /Oyerlc	ock 10 Tf 50 5
61	Impaired β-glucocerebrosidase activity and processing in frontotemporal dementia due to progranulin mutations. Acta Neuropathologica Communications, 2019, 7, 218.	2.4	47
62	Genetic screening of a large series of North American sporadic and familial frontotemporal dementia cases. Alzheimer's and Dementia, 2020, 16, 118-130.	0.4	43
63	Holocranohistochemistry enables the visualization of α-synuclein expression in the murine olfactory system and discovery of its systemic anti-microbial effects. Journal of Neural Transmission, 2017, 124, 721-738.	1.4	42
64	Rarity of the Alzheimer Disease–Protective <i>APP</i> A673T Variant in the United States. JAMA Neurology, 2015, 72, 209.	4.5	41
65	The Alzheimer's disease risk factor CD2AP maintains blood–brain barrier integrity. Human Molecular Genetics, 2015, 24, 6667-6674.	1.4	38
66	Individualized atrophy scores predict dementia onset in familial frontotemporal lobar degeneration. Alzheimer's and Dementia, 2020, 16, 37-48.	0.4	38
67	Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test. Genes, Brain and Behavior, 2016, 15, 588-603.	1.1	37
68	Alzheimer's disease risk gene BIN1 induces Tau-dependent network hyperexcitability. ELife, 2020, 9, .	2.8	35
69	Assessment of executive function declines in presymptomatic and mildly symptomatic familial frontotemporal dementia: NIHâ€EXAMINER as a potential clinical trial endpoint. Alzheimer's and Dementia, 2020, 16, 11-21.	0.4	32
70	Functional insights from biophysical study of TREM2 interactions with apoE and Aβ _{1â€42} . Alzheimer's and Dementia, 2021, 17, 475-488.	0.4	31
71	Proposed research criteria for prodromal behavioural variant frontotemporal dementia. Brain, 2022, 145, 1079-1097.	3.7	30
72	Usp14 Deficiency Increases Tau Phosphorylation without Altering Tau Degradation or Causing Tau-Dependent Deficits. PLoS ONE, 2012, 7, e47884.	1.1	28

#	Article	IF	CITATIONS
73	Polyneuropathy following gastric bypass surgery. American Journal of Medicine, 2003, 115, 679-680.	0.6	27
74	Clinical and volumetric changes with increasing functional impairment in familial frontotemporal lobar degeneration. Alzheimer's and Dementia, 2020, 16, 49-59.	0.4	27
75	Partial Tmem106b reduction does not correct abnormalities due to progranulin haploinsufficiency. Molecular Neurodegeneration, 2018, 13, 32.	4.4	25
76	Genome sequencing for early-onset or atypical dementia: high diagnostic yield and frequent observation of multiple contributory alleles. Journal of Physical Education and Sports Management, 2019, 5, a003491.	0.5	25
77	Revised Self-Monitoring Scale. Neurology, 2020, 94, e2384-e2395.	1.5	23
78	Clinical, imaging, pathological, and biochemical characterization of a novel presenilin 1 mutation (N135Y) causing Alzheimer's disease. Neurobiology of Aging, 2017, 49, 216.e7-216.e13.	1.5	22
79	Step-by-Step In Situ Hybridization Method for Localizing Gene Expression Changes in the Brain. Methods in Molecular Biology, 2010, 670, 207-230.	0.4	21
80	AlphaScreen HTS and Live-Cell Bioluminescence Resonance Energy Transfer (BRET) Assays for Identification of Tau–Fyn SH3 Interaction Inhibitors for Alzheimer Disease. Journal of Biomolecular Screening, 2014, 19, 1338-1349.	2.6	21
81	Brain volumetric deficits in <i>MAPT</i> mutation carriers: a multisite study. Annals of Clinical and Translational Neurology, 2021, 8, 95-110.	1.7	21
82	Comprehensive cross-sectional and longitudinal analyses of plasma neurofilament light across FTD spectrum disorders. Cell Reports Medicine, 2022, 3, 100607.	3.3	21
83	Neurodegenerative Disease–Associated Variants in TREM2 Destabilize the Apical Ligand-Binding Region of the Immunoglobulin Domain. Frontiers in Neurology, 2019, 10, 1252.	1.1	20
84	A peptide inhibitor of Tau-SH3 interactions ameliorates amyloid-β toxicity. Neurobiology of Disease, 2020, 134, 104668.	2.1	19
85	Tauâ€Atrophy Variability Reveals Phenotypic Heterogeneity in Alzheimer's Disease. Annals of Neurology, 2021, 90, 751-762.	2.8	19
86	Frontotemporal dementia. Current Neurology and Neuroscience Reports, 2006, 6, 481-489.	2.0	18
87	Aberrant regulation of a poison exon caused by a non-coding variant in a mouse model of Scn1a-associated epileptic encephalopathy. PLoS Genetics, 2021, 17, e1009195.	1.5	18
88	Geriatric epilepsy: Research and clinical directions for the future. Epilepsy and Behavior, 2011, 22, 103-111.	0.9	17
89	TAU ablation in excitatory neurons and postnatal TAU knockdown reduce epilepsy, SUDEP, and autism behaviors in a Dravet syndrome model. Science Translational Medicine, 2022, 14, eabm5527.	5.8	17
90	Challenges and opportunities for characterizing cognitive aging across species. Frontiers in Aging Neuroscience, 2012, 4, 6.	1.7	16

#	Article	IF	CITATIONS
91	Dysregulated clock gene expression and abnormal diurnal regulation of hippocampal inhibitory transmission and spatial memory in amyloid precursor protein transgenic mice. Neurobiology of Disease, 2021, 158, 105454.	2.1	15
92	Periodontal Infection Aggravates C1q-Mediated Microglial Activation and Synapse Pruning in Alzheimer's Mice. Frontiers in Immunology, 2022, 13, 816640.	2.2	15
93	Reduction of microglial progranulin does not exacerbate pathology or behavioral deficits in neuronal progranulin-insufficient mice. Neurobiology of Disease, 2019, 124, 152-162.	2.1	14
94	Memory-forming Chemical Reactions. Reviews in the Neurosciences, 2001, 12, 41-50.	1.4	13
95	Manifestations of Alzheimer's disease genetic risk in the blood are evident in a multiomic analysis in healthy adults aged 18 to 90. Scientific Reports, 2022, 12, 6117.	1.6	12
96	An IL1RL1 genetic variant lowers soluble ST2 levels and the risk effects of APOE-ε4 in female patients with Alzheimer's disease. Nature Aging, 2022, 2, 616-634.	5.3	11
97	Templated α-synuclein inclusion formation is independent of endogenous tau. ENeuro, 2021, 8, ENEURO.0458-20.2021.	0.9	9
98	MicroRNA-124 modulates social behavior in frontotemporal dementia. Nature Medicine, 2014, 20, 1381-1383.	15.2	8
99	Elevated levels of extracellular vesicles in progranulinâ€deficient mice and FTDâ€∢i>GRN Patients. Annals of Clinical and Translational Neurology, 2020, 7, 2433-2449.	1.7	8
100	Racial Differences in Alzheimer's Disease Specialist Encounters Are Associated with Usage of Molecular Imaging and Dementia Medications: An Enterprise-Wide Analysis Using i2b2. Journal of Alzheimer's Disease, 2021, 79, 543-557.	1.2	8
101	Contemporary Approaches to Alzheimer's Disease and Frontotemporal Dementia. Methods in Molecular Biology, 2010, 670, 1-9.	0.4	7
102	Severity dependent distribution of impairments in PSP and CBS: Interactive visualizations. Parkinsonism and Related Disorders, 2019, 60, 138-145.	1.1	7
103	Medical decision-making in progressive supranuclear palsy: A comparison to other neurodegenerative disorders. Parkinsonism and Related Disorders, 2019, 61, 77-81.	1.1	7
104	Dissection of the polygenic architecture of neuronal Aβ production using a large sample of individual iPSC lines derived from Alzheimer's disease patients. Nature Aging, 2022, 2, 125-139.	5.3	7
105	Beyond diagnosis: What biomarkers are teaching us about the "bioâ€logy of Alzheimer disease. Annals of Neurology, 2010, 67, 283-285.	2.8	6
106	Genetic influences on cognition in progressive supranuclear palsy. Movement Disorders, 2017, 32, 1764-1771.	2.2	6
107	Development of a multi-component intervention to promote participation of Black and Latinx individuals in biomedical research. Journal of Clinical and Translational Science, 2021, 5, e134.	0.3	6
108	Dynamic Amyloid PET: Relationships to Flortaucipir Tau PET Measures. Journal of Nuclear Medicine, 2021, , jnumed.120.254490.	2.8	6

#	Article	IF	CITATIONS
109	Effects of Exercise on Progranulin Levels and Gliosis in Progranulin-Insufficient Mice. ENeuro, 2015, 2, ENEURO.0061-14.2015.	0.9	6
110	Alzheimer's Disease and Frontotemporal Dementia. Methods in Molecular Biology, 2011, , .	0.4	5
111	DNA methylation slows effects of <i>C9orf72</i> mutations. Neurology, 2015, 84, 1616-1617.	1.5	5
112	Differences in Motor Features of <i>C9orf72</i> , <i>MAPT</i> , or <i>GRN</i> Variant Carriers With Familial Frontotemporal Lobar Degeneration. Neurology, 2022, 99, .	1.5	5
113	Biomarker Localization, Analysis, Visualization, Extraction, and Registration (BLAzER) Methodology for Research and Clinical Brain PET Applications. Journal of Alzheimer's Disease, 2019, 70, 1241-1257.	1.2	4
114	Association of Performance on the Financial Capacity Instrument–Short Form With Brain Amyloid Load and Cortical Thickness in Older Adults. Neurology: Clinical Practice, 2022, 12, 113-124.	0.8	3
115	14-3-3Î, Does Not Protect against Behavioral or Pathological Deficits in Alzheimer's Disease Mouse Models. ENeuro, 2022, 9, ENEURO.0368-21.2022.	0.9	2
116	Regulation of adenylyl cyclase in LTP. Behavioral and Brain Sciences, 1995, 18, 485-486.	0.4	1
117	O3-06-01: Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer's disease. , 2015, 11, P230-P230.		1
118	Animal models of dementia. , 0, , 131-141.		0
119	Pathophysiology and animal models of frontotemporal dementia. , 0, , 197-210.		0
120	Animal models of dementia. , 0, , 77-93.		0
121	Developing a Functionally Valid Model of the TREM2-ApoE Complex to Better Understand Its Role in Alzheimer's Disease. Biophysical Journal, 2021, 120, 207a.	0.2	Ο
122	Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD. Journal of Cell Biology, 2014, 206, 2065OIA144.	2.3	0
123	Influence of Subject-Specific Effects in Longitudinal Modelling of Cognitive Decline in Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, , 1-13.	1.2	Ο
124	Title is missing!. , 2021, 17, e1009195.		0
125	Title is missing!. , 2021, 17, e1009195.		0
126	Title is missing!. , 2021, 17, e1009195.		0

#	Article	IF	CITATIONS
127	Title is missing!. , 2021, 17, e1009195.		0