

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3262228/publications.pdf Version: 2024-02-01

NASEED K A

#	Article	IF	CITATIONS
1	Influence of Bi2O3 concentration on barium-telluro-borate glasses: Physical, structural and radiation-shielding properties. Ceramics International, 2021, 47, 329-340.	4.8	110
2	Impact of Bi2O3 modifier concentration on barium–zincborate glasses: physical, structural, elastic, and radiation-shielding properties. European Physical Journal Plus, 2021, 136, 116.	2.6	94
3	The impact of Er3+ ions on the spectroscopic scrutiny of Bismuth bariumtelluroborate glasses for display devices and 1.53â€Î¼m amplification. Journal of Non-Crystalline Solids, 2019, 520, 119463.	3.1	82
4	The impact of Er/Yb co-doping on the spectroscopic performance of bismuth borophosphate glasses for photonic applications. Vacuum, 2021, 183, 109788.	3.5	76
5	Influence of modifier oxide on the structural and radiation shielding features of Sm3+-doped calcium telluro-fluoroborate glass systems. Journal of the Australian Ceramic Society, 2021, 57, 275-286.	1.9	67
6	The concentration impact of Yb3+ on the bismuth boro-phosphate glasses: Physical, structural, optical, elastic, and radiation-shielding properties. Radiation Physics and Chemistry, 2021, 188, 109617.	2.8	61
7	Structural, optical and nuclear radiation shielding properties of strontium barium borate glasses doped with dysprosium and niobium. Journal of Materials Science: Materials in Electronics, 2021, 32, 8570-8592.	2.2	60
8	Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium. Journal of Materials Science: Materials in Electronics, 2020, 31, 21486-21501.	2.2	55
9	Optical, elastic, and neutron shielding studies of Nb2O5 varied Dy3+ doped barium-borate glasses. Optik, 2022, 251, 168436.	2.9	51
10	Influence of modifiers on the physical, structural, elastic and radiation shielding competence of Dy3+ ions doped Alkali boro-tellurite glasses. Radiation Physics and Chemistry, 2021, 189, 109741.	2.8	44
11	Effect of TeO2 addition on the gamma radiation shielding competence and mechanical properties of boro-tellurite glass: an experimental approach. Journal of Materials Research and Technology, 2022, 18, 1017-1027.	5.8	41
12	Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications. Radiation Physics and Chemistry, 2022, 193, 110004.	2.8	38
13	Impact of Modifier Oxides on Mechanical and Radiation Shielding Properties of B2O3-SrO-TeO2-RO Glasses (Where RO = TiO2, ZnO, BaO, and PbO). Applied Sciences (Switzerland), 2021, 11, 10904.	2.5	36
14	Characterization of Ultramafic–Alkaline–Carbonatite complex for radiation shielding competencies: An experimental and Monte Carlo study with lithological mapping. Ore Geology Reviews, 2022, 142, 104735.	2.7	29
15	Thulium-doped barium tellurite glasses: structural, thermal, linear, and non-linear optical investigations. Journal of Materials Science: Materials in Electronics, 2021, 32, 23030-23046.	2.2	28
16	Advanced nuclear radiation shielding studies of some mafic and ultramafic complexes with lithological mapping. Radiation Physics and Chemistry, 2021, 189, 109777.	2.8	27
17	Enhanced luminescence properties of Er3+/Yb3+ doped zinc tellurofluoroborate glasses for 1.5â€Âµm optical amplification. AIP Conference Proceedings, 2020, , .	0.4	27
18	Multispectral remote sensing for determination the Ultra-mafic complexes distribution and their applications in reducing the equivalent dose from the radioactive wastes. European Physical Journal Plus, 2022, 137, 1.	2.6	24

Naseer K A

#	Article	IF	CITATIONS
19	Design and Gamma-Ray Attenuation Features of New Concrete Materials for Low- and Moderate-Photons Energy Protection Applications. Materials, 2022, 15, 4947.	2.9	24
20	Gamma-ray protection capacity evaluation and satellite data based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district, India. Radiation Physics and Chemistry, 2022, 196, 110108.	2.8	23
21	Optical properties and radiation shielding studies of europium doped modifier reliant multi former glasses. Optik, 2021, 247, 168005.	2.9	21
22	The significance of nuclear data in the production of radionuclides for theranostic/therapeutic applications. Radiation Physics and Chemistry, 2022, 200, 110342.	2.8	17
23	Study on the luminescence behavior of Dy3+ ions activated, modifier dependent alkali boro-tellurite glasses for white LED application. Optik, 2022, 259, 169024.	2.9	13
24	A complete analysis of the structural, optical, and gamma-ray attenuation of Dy3+ doped modifiers dependent Lead phosphate boro-tellurite glasses. Optik, 2022, 264, 169433.	2.9	9
25	Luminescence studies on Eu3+ ions doped telluroborate glasses for photonic applications. AIP Conference Proceedings, 2019, , .	0.4	5