Carter Abney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3262213/publications.pdf Version: 2024-02-01

CADTED ARNEY

#	Article	IF	CITATIONS
1	CO ₂ Capture Using PIM-1 Hollow Fiber Sorbents with Enhanced Performance by PEI Infusion. Industrial & Engineering Chemistry Research, 2021, 60, 12709-12718.	1.8	7
2	Nanospace Decoration with Uranyl-Specific "Hooks―for Selective Uranium Extraction from Seawater with Ultrahigh Enrichment Index. ACS Central Science, 2021, 7, 1650-1656.	5.3	49
3	A new trick for an old support: Stabilizing gold single atoms on LaFeO3 perovskite. Applied Catalysis B: Environmental, 2020, 261, 118178.	10.8	31
4	Capture of Iodine from Nuclear-Fuel-Reprocessing Off-Gas: Influence of Aging on a Reduced Silver Mordenite Adsorbent after Exposure to NO/NO ₂ . ACS Applied Materials & Interfaces, 2020, 12, 49680-49693.	4.0	24
5	Design Strategies to Enhance Amidoxime Chelators for Uranium Recovery. ACS Applied Materials & Interfaces, 2019, 11, 30919-30926.	4.0	91
6	Polyamidoxime chain length drives emergent metal-binding phenomena. Physical Chemistry Chemical Physics, 2019, 21, 554-560.	1.3	4
7	Metallopolymerization as a Strategy to Translate Ligand-Modulated Chemoselectivity to Porous Catalysts. Organometallics, 2019, 38, 3436-3443.	1.1	9
8	Peroxide-treated metal-organic framework templated adsorbents for remediation of high level nuclear waste. Journal of Hazardous Materials, 2019, 365, 306-311.	6.5	10
9	Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste. Nature Communications, 2018, 9, 1644.	5.8	300
10	Engineering nanoporous organic frameworks to stabilize naked Au clusters: a charge modulation approach. Chemical Communications, 2018, 54, 5058-5061.	2.2	19
11	Accelerating Membraneâ€based CO ₂ Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling. Angewandte Chemie - International Edition, 2018, 57, 2816-2821.	7.2	44
12	Accelerating Membraneâ€based CO ₂ Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling. Angewandte Chemie, 2018, 130, 2866-2871.	1.6	10
13	Covalent Organic Frameworks as a Decorating Platform for Utilization and Affinity Enhancement of Chelating Sites for Radionuclide Sequestration. Advanced Materials, 2018, 30, e1705479.	11.1	398
14	Entropy-stabilized metal oxide solid solutions as CO oxidation catalysts with high-temperature stability. Journal of Materials Chemistry A, 2018, 6, 11129-11133.	5.2	196
15	Selective separation of americium from europium using 2,9-bis(triazine)-1,10-phenanthrolines in ionic liquids: a new twist on an old story. Chemical Communications, 2017, 53, 2744-2747.	2.2	32
16	Efficient removal of organic dye pollutants using covalent organic frameworks. AICHE Journal, 2017, 63, 3470-3478.	1.8	136
17	Postsynthetically Modified Covalent Organic Frameworks for Efficient and Effective Mercury Removal. Journal of the American Chemical Society, 2017, 139, 2786-2793.	6.6	808
18	Toward the Design of a Hierarchical Perovskite Support: Ultra-Sintering-Resistant Gold Nanocatalysts for CO Oxidation. ACS Catalysis, 2017, 7, 3388-3393.	5.5	40

CARTER ABNEY

#	Article	IF	CITATIONS
19	X-ray Absorption Spectroscopy Investigation of Iodine Capture by Silver-Exchanged Mordenite. Industrial & Engineering Chemistry Research, 2017, 56, 4837-4846.	1.8	32
20	Controlling the Intermediate Structure of an Ionic Liquid for f-Block Element Separations. Journal of Physical Chemistry Letters, 2017, 8, 2049-2054.	2.1	8
21	Superacid-promoted synthesis of highly porous hypercrosslinked polycarbazoles for efficient CO ₂ capture. Chemical Communications, 2017, 53, 7645-7648.	2.2	32
22	Controlling interfacial properties in supported metal oxide catalysts through metal–organic framework templating. Journal of Materials Chemistry A, 2017, 5, 13565-13572.	5.2	15
23	Efficient Mercury Capture Using Functionalized Porous Organic Polymer. Advanced Materials, 2017, 29, 1700665.	11.1	255
24	Pdâ€Metalated Conjugated Nanoporous Polycarbazoles for Additiveâ€Free Cyanation of Aryl Halides: Boosting Catalytic Efficiency through Spatial Modulation. ChemSusChem, 2017, 10, 2348-2351.	3.6	12
25	Functionalized Porous Aromatic Framework for Efficient Uranium Adsorption from Aqueous Solutions. ACS Applied Materials & Interfaces, 2017, 9, 12511-12517.	4.0	215
26	Successful Coupling of a Bis-Amidoxime Uranophile with a Hydrophilic Backbone for Selective Uranium Sequestration. ACS Applied Materials & amp; Interfaces, 2017, 9, 27894-27904.	4.0	36
27	Origin of the unusually strong and selective binding of vanadium by polyamidoximes in seawater. Nature Communications, 2017, 8, 1560.	5.8	110
28	Materials for the Recovery of Uranium from Seawater. Chemical Reviews, 2017, 117, 13935-14013.	23.0	639
29	Use of steric encumbrance to develop conjugated nanoporous polymers for metal-free catalytic hydrogenation. Chemical Communications, 2016, 52, 11919-11922.	2.2	17
30	A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer. Physical Chemistry Chemical Physics, 2016, 18, 23462-23468.	1.3	13
31	<i>In Situ</i> Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO ₂ Capture Performance. Journal of the American Chemical Society, 2016, 138, 11497-11500.	6.6	200
32	XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies. Energy and Environmental Science, 2016, 9, 448-453.	15.6	115
33	Robust and Porous β-Diketiminate-Functionalized Metal–Organic Frameworks for Earth-Abundant-Metal-Catalyzed C–H Amination and Hydrogenation. Journal of the American Chemical Society, 2016, 138, 3501-3509.	6.6	158
34	Design, Synthesis, and Characterization of a Bifunctional Chelator with Ultrahigh Capacity for Uranium Uptake from Seawater Simulant. Industrial & Engineering Chemistry Research, 2016, 55, 4170-4178.	1.8	25
35	A Poly(acrylonitrile)-Functionalized Porous Aromatic Framework Synthesized by Atom-Transfer Radical Polymerization for the Extraction of Uranium from Seawater. Industrial & Engineering Chemistry Research, 2016, 55, 4125-4129.	1.8	58
36	The first chiral diene-based metal–organic frameworks for highly enantioselective carbon–carbon bond formation reactions. Chemical Science, 2015, 6, 7163-7168.	3.7	71

CARTER ABNEY

#	Article	IF	CITATIONS
37	Metalâ€Organic Framework Templated Inorganic Sorbents for Rapid and Efficient Extraction of Heavy Metals. Advanced Materials, 2014, 26, 7993-7997.	11.1	148
38	Graphene-Immobilized Monomeric Bipyridine-M ^{<i>x</i>+} (M ^{<i>x</i>+} =) Tj ETQq0 0 Electrocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2014, 6, 18475-18479.	0 rgBT /Ov 4.0	erlock 10 Tf 5 37
39	Topotactic Transformations of Metal–Organic Frameworks to Highly Porous and Stable Inorganic Sorbents for Efficient Radionuclide Sequestration. Chemistry of Materials, 2014, 26, 5231-5243.	3.2	107
40	A Metal–Organic Framework Containing Unusual Eightâ€Connected Zr–Oxo Secondary Building Units and Orthogonal Carboxylic Acids for Ultraâ€sensitive Metal Detection. Chemistry - A European Journal, 2014, 20, 14965-14970.	1.7	58
41	Salicylaldimine-Based Metal–Organic Framework Enabling Highly Active Olefin Hydrogenation with Iron and Cobalt Catalysts. Journal of the American Chemical Society, 2014, 136, 13182-13185.	6.6	159
42	Organo-functionalized mesoporous silicas for efficient uranium extraction. Microporous and Mesoporous Materials, 2013, 180, 22-31.	2.2	128
43	Novel Dual-Mode Immunomagnetic Method for Studying Reactivation of Nerve Agent-Inhibited Butyrylcholinesterase. Chemical Research in Toxicology, 2013, 26, 775-782.	1.7	8
44	Uranium Sorption with Functionalized Mesoporous Carbon Materials. Industrial & Engineering Chemistry Research, 2013, 52, 15187-15197.	1.8	112
45	Highly porous and stable metal–organic frameworks for uranium extraction. Chemical Science, 2013, 4, 2396.	3.7	506
46	Tuning Amidoximate to Enhance Uranyl Binding: A Density Functional Theory Study. Journal of Physical Chemistry A, 2013, 117, 11558-11565.	1.1	53
47	A High-Throughput Diagnostic Method for Measuring Human Exposure to Organophosphorus Nerve Agents. Analytical Chemistry, 2012, 84, 9470-9477.	3.2	34
48	High-Throughput Immunomagnetic Scavenging Technique for Quantitative Analysis of Live VX Nerve Agent in Water, Hamburger, and Soil Matrixes. Analytical Chemistry, 2012, 84, 10052-10057.	3.2	11
49	A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis. Nature Chemistry, 2010, 2, 838-846.	6.6	813
50	Enantioselective catalysis with homochiral metal–organic frameworks. Chemical Society Reviews, 2009, 38, 1248.	18.7	2,967