Roberta Torregrossa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3262092/publications.pdf

Version: 2024-02-01

687363 1,108 21 13 citations h-index papers

g-index 21 21 21 1213 docs citations times ranked citing authors all docs

713466

21

#	Article	IF	CITATIONS
1	Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration. Cell Metabolism, 2019, 30, 1152-1170.e13.	16.2	236
2	Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chemical Science, 2016, 7, 3414-3426.	7.4	175
3	Hydrogen sulfide is neuroprotective in Alzheimer's disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	124
4	The novel mitochondria-targeted hydrogen sulfide (H 2 S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro. Pharmacological Research, 2016, 113, 186-198.	7.1	120
5	Cytochrome <i>c</i> Reduction by H ₂ S Potentiates Sulfide Signaling. ACS Chemical Biology, 2018, 13, 2300-2307.	3.4	76
6	AP39, a mitochondria-targeting hydrogen sulfide (H ₂ S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. British Journal of Pharmacology, 2017, 174, 287-301.	5.4	69
7	Pharmacological postconditioning against myocardial infarction with a slow-releasing hydrogen sulfide donor, GYY4137. Pharmacological Research, 2016, 111, 442-451.	7.1	54
8	Mitochondria-targeted hydrogen sulfide attenuates endothelial senescence by selective induction of splicing factors HNRNPD and SRSF2. Aging, 2018, 10, 1666-1681.	3.1	54
9	Hydrogen Sulfide Abrogates Hemoglobin-Lipid Interaction in Atherosclerotic Lesion. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-16.	4.0	29
10	Mitochondrial hydrogen sulfide supplementation improves health in the <i>C. elegans</i> Duchenne muscular dystrophy model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
11	The Slow-Releasing and Mitochondria-Targeted Hydrogen Sulfide (H2S) Delivery Molecule AP39 Induces Brain Tolerance to Ischemia. International Journal of Molecular Sciences, 2021, 22, 7816.	4.1	26
12	The Mitochondria-Targeted H2S-Donor AP39 in a Murine Model of Combined Hemorrhagic Shock and Blunt Chest Trauma. Shock, 2019, 52, 230-239.	2.1	22
13	Hydrogen sulfide inhibits calcification of heart valves; implications for calcific aortic valve disease. British Journal of Pharmacology, 2020, 177, 793-809.	5.4	19
14	Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxidants and Redox Signaling, 2021, 35, 551-579.	5.4	14
15	Mitochondria-targeted hydrogen sulfide donors versus acute oxidative gastric mucosal injury. Journal of Controlled Release, 2022, 348, 321-334.	9.9	14
16	GYY4137 and Sodium Hydrogen Sulfide Relaxations Are Inhibited by L-Cysteine and KV7 Channel Blockers in Rat Small Mesenteric Arteries. Frontiers in Pharmacology, 2021, 12, 613989.	3.5	13
17	Mitochondria-Targeted Hydrogen Sulfide Delivery Molecules Protect Against UVA-Induced Photoaging in Human Dermal Fibroblasts, and in Mouse Skin <i>In Vivo</i> . Antioxidants and Redox Signaling, 2022, 36, 1268-1288.	5.4	12
18	The mitochondriaâ€targeted hydrogen sulfide donor AP39 improves health and mitochondrial function in a C. elegans primary mitochondrial disease model. Journal of Inherited Metabolic Disease, 2021, 44, 367-375.	3.6	10

#	Article	IF	CITATIONS
19	Hydrogen Sulfide Is a Novel Protector of the Retinal Glycocalyx and Endothelial Permeability Barrier. Frontiers in Cell and Developmental Biology, 2021, 9, 724905.	3.7	6
20	Effect of hydrogen sulfide on glycolysisâ€based energy production in mouse erythrocytes. Journal of Cellular Physiology, 2022, 237, 763-773.	4.1	4
21	Vasorelaxant Activity of AP39, a Mitochondria-Targeted H2S Donor, on Mouse Mesenteric Artery Rings In Vitro. Biomolecules, 2022, 12, 280.	4.0	4