Rikkert J Nap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3261748/publications.pdf Version: 2024-02-01

Ρικκέρτ Ι Νλά

#	Article	IF	CITATIONS
1	Acid-Base Equilibrium and Dielectric Environment Regulate Charge in Supramolecular Nanofibers. Frontiers in Chemistry, 2022, 10, 852164.	1.8	6
2	Dynamic Crowding Regulates Transcription. Biophysical Journal, 2020, 118, 2117-2129.	0.2	15
3	Physical and data structure of 3D genome. Science Advances, 2020, 6, eaay4055.	4.7	32
4	Charge regulation mechanism in end-tethered weak polyampholytes. Soft Matter, 2020, 16, 8832-8847.	1.2	13
5	Theoretical Modeling of Chemical Equilibrium in Weak Polyelectrolyte Layers on Curved Nanosystems. Polymers, 2020, 12, 2282.	2.0	16
6	Effect of Polymer Surface Modification of Superparamagnetic Iron Oxide Nanoparticle Dispersions in High Salinity Environments. Langmuir, 2019, 35, 15864-15871.	1.6	3
7	pH-Dependent structure of water-exposed surfaces of CdSe quantum dots. Chemical Communications, 2019, 55, 5435-5438.	2.2	11
8	Competitive calcium ion binding to end-tethered weak polyelectrolytes. Soft Matter, 2018, 14, 2365-2378.	1.2	38
9	The interplay of nanointerface curvature and calcium binding in weak polyelectrolyte-coated nanoparticles. Biomaterials Science, 2018, 6, 1048-1058.	2.6	11
10	Effect of calcium ions on the interactions between surfaces end-grafted with weak polyelectrolytes. Journal of Chemical Physics, 2018, 149, 163309.	1.2	19
11	Highly sensitive gating in pH-responsive nanochannels as a result of ionic bridging and nanoconfinement. Physical Chemistry Chemical Physics, 2018, 20, 16657-16665.	1.3	10
12	Covalent-supramolecular hybrid polymers as muscle-inspired anisotropic actuators. Nature Communications, 2018, 9, 2395.	5.8	102
13	Structural behavior of competitive temperature and pH-responsive tethered polymer layers. Soft Matter, 2017, 13, 6322-6331.	1.2	6
14	Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers. Journal of Chemical Physics, 2014, 140, 024910.	1.2	39
15	On the stability of nanoparticles coated with polyelectrolytes in high salinity solutions. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1689-1699.	2.4	21
16	The Role of Solution Conditions in the Bacteriophage PP7 Capsid Charge Regulation. Biophysical Journal, 2014, 107, 1970-1979.	0.2	79
17	Adsorption of Superparamagnetic Iron Oxide Nanoparticles on Silica and Calcium Carbonate Sand. Langmuir, 2014, 30, 784-792.	1.6	24
18	Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles. Nature Nanotechnology, 2013, 8, 676-681.	15.6	136

Rikkert J Nap

#	Article	IF	CITATIONS
19	Adsorption of Acid and Polymer Coated Nanoparticles: A Statistical Thermodynamics Approach. Langmuir, 2013, 29, 14482-14493.	1.6	7
20	How to optimize binding of coated nanoparticles: coupling of physical interactions, molecular organization and chemical state. Biomaterials Science, 2013, 1, 814.	2.6	20
21	Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2240-2245.	3.3	144
22	Stability of Superparamagnetic Iron Oxide Nanoparticles at Different pH Values: Experimental and Theoretical Analysis. Langmuir, 2012, 28, 6246-6255.	1.6	51
23	Confinement induced lateral segregation of polymer coated nanospheres. Soft Matter, 2012, 8, 1688-1700.	1.2	10
24	Tunable Diacetylene Polymerized Shell Microbubbles as Ultrasound Contrast Agents. Langmuir, 2012, 28, 3766-3772.	1.6	23
25	Interacting nanoparticles with functional surface groups. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 852-862.	2.4	16
26	How and Why Nanoparticle's Curvature Regulates the Apparent p <i>K</i> _a of the Coating Ligands. Journal of the American Chemical Society, 2011, 133, 2192-2197.	6.6	208
27	Order–disorder transition induced by surfactant micelles in single-walled carbon nanotubes dispersions. Soft Matter, 2010, 6, 5289.	1.2	16
28	Hydrophobic-induced surface reorganization: molecular dynamics simulations of water nanodroplets on perfluorocarbon self-assembled monolayers. Soft Matter, 2010, 6, 1644.	1.2	11
29	Structure and Interactions of Aggrecans: Statistical Thermodynamic Approach. Biophysical Journal, 2008, 95, 4570-4583.	0.2	43
30	The Role of Hydrogen Bonding in Tethered Polymer Layers. Journal of Physical Chemistry B, 2008, 112, 16238-16248.	1.2	49
31	Double Periodic Lamellar-in-Lamellar Structure in Multiblock Copolymer Melts with Competing Length Scales. Macromolecules, 2006, 39, 6765-6770.	2.2	55
32	Weak polyelectrolytes tethered to surfaces: Effect of geometry, acid–base equilibrium and electrical permittivity. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2638-2662.	2.4	171
33	Control of Carbon Nanotubeâ^'Surface Interactions:Â The Role of Grafted Polymers. Langmuir, 2005, 21, 12072-12075.	1.6	29
34	Self-Assembling Block Copolymer Systems Involving Competing Length Scales:Â A Route toward Responsive Materials. Macromolecules, 2004, 37, 4296-4303.	2.2	38
35	Ordering at Two Length Scales in Combâ^'Coil Diblock Copolymers Consisting of Only Two Different Monomers. Macromolecules, 2002, 35, 952-959.	2.2	43
36	Microphase separation at two length scales. European Physical Journal E, 2001, 4, 515-519.	0.7	43