
$\tilde{D}^{o}\tilde{N}\tilde{D}^{o}\tilde{D}^{1/2}\tilde{D}^{o}\tilde{D}^{b}_{2}\tilde{D}^{\pm}\tilde{D}^{o}\tilde{D}^{*}\tilde{N}\tilde{C}\tilde{D}^{1/2}\tilde{D}_{2}\tilde{D}^{o}$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3261687/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Productivity of sorghum crops depending on agrotechnical methods of cultivation in the regions of the Russian Federation (review). Agricultural Science Euro-North-East, 2021, 22, 155-166.	0.7	1
2	The method of â€~main component' in the grain sorghum breeding for arid conditions of the lower Volga region. Grain Economy of Russia, 2021, , 22-26.	0.6	0
3	Assessment of drought resistance in sorghum CMS lines based on various sterility sources. Proceedings on Applied Botany, Genetics and Breeding, 2021, 182, 9-17.	0.6	2
4	Influence of different types of sterile cytoplasms (A3, A4, 9E) on the combining ability of CMS lines of sorghum. Vavilovskii Zhurnal Genetiki I Selektsii, 2020, 24, 549-556.	1.1	4
5	The efects of heterosis of the sorghum hybrids F1 based on cytoplasmic male sterility. Grain Economy of Russia, 2020, , 49-53.	0.6	0
6	THE ESTIMATION OF SORGHUM GRAIN AND BIOMASS QUALITY TO USE IT IN FEED PRODUCTION. Grain Economy of Russia, 2019, , 3-7.	0.6	4
7	Using A3, A4, and 9E CMS Types in Breeding Grain Sorghum Hybrids. Russian Agricultural Sciences, 2018, 44, 516-520.	0.2	1
8	Combining ability of CMS-lines of grain sorghum based on A1,ÂA2, A3, A4, 9E and M-35-1A types of Ñ y toplasmic male sterility. Vavilovskii Zhurnal Genetiki I Selektsii, 2017, 21, 651-656.	1.1	8
9	Effect of the cytoplasmic male sterility type on the chlorophyll content in the leaves of grain sorghum hybrids. Russian Journal of Genetics: Applied Research, 2016, 6, 520-526.	0.4	0
10	Genetic and epigenetic regulation of male fertility restoration in the 9E, A4 and M35 CMS-inducing cytoplasms of sorghum. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2006, 54, 281-289.	0.2	3