$\tilde{D} \tilde{D}^o \tilde{N} \tilde{D}^o \tilde{D}^1 /_2 \tilde{D}^o \tilde{D} \tilde{D}^o \tilde{D}^* \tilde{D}^+ \tilde{D}^o \tilde{D}^o \tilde{N} \tilde{C} \tilde{D}^1 /_2 \tilde{D}^o \tilde{$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3261687/publications.pdf

Version: 2024-02-01

		2258059	2053705
10	23	3	5
papers	citations	h-index	g-index
10	10	10	10
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Combining ability of CMS-lines of grain sorghum based on A1,ÂA2, A3, A4, 9E and M-35-1A types of Nytoplasmic male sterility. Vavilovskii Zhurnal Genetiki I Selektsii, 2017, 21, 651-656.	1.1	8
2	Influence of different types of sterile cytoplasms (A3, A4, 9E) on the combining ability of CMS lines of sorghum. Vavilovskii Zhurnal Genetiki I Selektsii, 2020, 24, 549-556.	1.1	4
3	THE ESTIMATION OF SORGHUM GRAIN AND BIOMASS QUALITY TO USE IT IN FEED PRODUCTION. Grain Economy of Russia, 2019, , 3-7.	0.6	4
4	Genetic and epigenetic regulation of male fertility restoration in the 9E, A4 and M35 CMS-inducing cytoplasms of sorghum. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2006, 54, 281-289.	0.2	3
5	Assessment of drought resistance in sorghum CMS lines based on various sterility sources. Proceedings on Applied Botany, Genetics and Breeding, 2021, 182, 9-17.	0.6	2
6	Using A3, A4, and 9E CMS Types in Breeding Grain Sorghum Hybrids. Russian Agricultural Sciences, 2018, 44, 516-520.	0.2	1
7	Productivity of sorghum crops depending on agrotechnical methods of cultivation in the regions of the Russian Federation (review). Agricultural Science Euro-North-East, 2021, 22, 155-166.	0.7	1
8	Effect of the cytoplasmic male sterility type on the chlorophyll content in the leaves of grain sorghum hybrids. Russian Journal of Genetics: Applied Research, 2016, 6, 520-526.	0.4	0
9	The method of â€~main component' in the grain sorghum breeding for arid conditions of the lower Volga region. Grain Economy of Russia, 2021, , 22-26.	0.6	O
10	The efects of heterosis of the sorghum hybrids F1 based on cytoplasmic male sterility. Grain Economy of Russia, 2020, , 49-53.	0.6	0