Cécile Thonar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3260582/publications.pdf

Version: 2024-02-01

687220 940416 16 807 13 16 citations h-index g-index papers 16 16 16 1244 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Green manure effect on the ability of native and inoculated soil bacteria to mobilize zinc for wheat uptake (Triticum aestivum L.). Plant and Soil, 2021, 467, 287-309.	1.8	4
2	Long-term organic matter application reduces cadmium but not zinc concentrations in wheat. Science of the Total Environment, 2019, 669, 608-620.	3.9	42
3	Evaluation of MALDI-TOF mass spectrometry for the competitiveness analysis of selected indigenous cowpea (Vigna unguiculata L. Walp.) Bradyrhizobium strains from Kenya. Applied Microbiology and Biotechnology, 2018, 102, 5265-5278.	1.7	8
4	Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. Agriculture, Ecosystems and Environment, 2018, 261, 161-171.	2.5	45
5	Identification of Heterotrophic Zinc Mobilization Processes among Bacterial Strains Isolated from Wheat Rhizosphere (Triticum aestivum L.). Applied and Environmental Microbiology, 2018, 84, .	1.4	61
6	Green manure and long-term fertilization effects on soil zinc and cadmium availability and uptake by wheat (Triticum aestivum L.) at different growth stages. Science of the Total Environment, 2017, 599-600, 1330-1343.	3.9	40
7	Potential of three microbial bio-effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils. Chemical and Biological Technologies in Agriculture, 2017, 4, .	1.9	49
8	Long term farming systems affect soils potential for N2O production and reduction processes under denitrifying conditions. Soil Biology and Biochemistry, 2017, 114, 31-41.	4.2	34
9	Application of Mycorrhiza and Soil from a Permaculture System Improved Phosphorus Acquisition in Naranjilla. Frontiers in Plant Science, 2017, 8, 1263.	1.7	13
10	Tracing of Two Pseudomonas Strains in the Root and Rhizoplane of Maize, as Related to Their Plant Growth-Promoting Effect in Contrasting Soils. Frontiers in Microbiology, 2016, 7, 2150.	1.5	46
11	Competition and facilitation in synthetic communities of arbuscular mycorrhizal fungi. Molecular Ecology, 2014, 23, 733-746.	2.0	79
12	Metabolite profiling on wheat grain to enable a distinction of samples from organic and conventional farming systems. Journal of the Science of Food and Agriculture, 2014, 94, 2605-2612.	1.7	29
13	Realâ€time PCR to quantify composition of arbuscular mycorrhizal fungal communitiesâ€"marker design, verification, calibration and field validation. Molecular Ecology Resources, 2012, 12, 219-232.	2.2	125
14	Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant and Soil, 2011, 339, 231-245.	1.8	109
15	Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza, 2011, 21, 689-702.	1.3	102
16	Polymorphism and modulation of cell wall esterase enzyme activities in the chicory root during the growing season. Journal of Experimental Botany, 2006, 57, 81-89.	2.4	21