Cecile Leduc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3260445/publications.pdf

Version: 2024-02-01

304743 454955 2,444 32 22 30 citations h-index g-index papers 37 37 37 3270 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular organization and mechanics of single vimentin filaments revealed by super-resolution imaging. Science Advances, 2022, 8, eabm2696.	10.3	21
2	Cell stretching is amplified by active actin remodelling to deform and recruit proteins in mechanosensitive structures. Nature Cell Biology, 2020, 22, 1011-1023.	10.3	35
3	Stochastic modeling reveals how motor protein and filament properties affect intermediate filament transport. Journal of Theoretical Biology, 2019, 464, 132-148.	1.7	17
4	Deciphering the transport of elastic filaments by antagonistic motor proteins. Physical Review E, 2019, 99, 042414.	2.1	8
5	Microtubule acetylation but not detyrosination promotes focal adhesion dynamics and astrocyte migration. Journal of Cell Science, 2019, 132, .	2.0	45
6	Imaging Intermediate Filaments and Microtubules with 2-dimensional Direct Stochastic Optical Reconstruction Microscopy. Journal of Visualized Experiments, 2018, , .	0.3	5
7	Intermediate filaments control collective migration by restricting traction forces and sustaining cell–cell contacts. Journal of Cell Biology, 2018, 217, 3031-3044.	5.2	126
8	Regulation of microtubule-associated motors drives intermediate filament network polarization. Journal of Cell Biology, 2017, 216, 1689-1703.	5.2	85
9	Intermediate filaments join the action. Cell Cycle, 2017, 16, 1389-1390.	2.6	7
10	Two-tiered coupling between flowing actin and immobilized <i>N</i> -cadherin/catenin complexes in neuronal growth cones. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6997-7002.	7.1	34
11	Intermediate filaments in cell migration and invasion: the unusual suspects. Current Opinion in Cell Biology, 2015, 32, 102-112.	5.4	118
12	Single-molecule imaging in live cell using gold nanoparticles. Methods in Cell Biology, 2015, 125, 13-27.	1.1	5
13	Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion. EMBO Journal, 2014, 33, 2745-2764.	7.8	128
14	A Slipping Clutch in Neuronal Growth Cones Revealed by Transient Single Molecule Interactions between Flowing Actin and N-Cadherin Adhesions. Biophysical Journal, 2014, 106, 357a.	0.5	0
15	Advances in live-cell single-particle tracking and dynamic super-resolution imaging. Current Opinion in Chemical Biology, 2014, 20, 78-85.	6.1	81
16	A Highly Specific Gold Nanoprobe for Live-Cell Single-Molecule Imaging in Confined Environments: Intracellular Tracking and Long-Term Single Integrin Tracking in Adhesion Sites. Biophysical Journal, 2014, 106, 193a-194a.	0.5	0
17	A Highly Specific Gold Nanoprobe for Live-Cell Single-Molecule Imaging. Nano Letters, 2013, 13, 1489-1494.	9.1	116
18	Studying In Vitro Membrane Curvature Recognition by Proteins and its Role in Vesicular Trafficking. Methods in Cell Biology, 2012, 108, 47-71.	1.1	9

#	Article	IF	CITATIONS
19	Molecular crowding creates traffic jams of kinesin motors on microtubules. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6100-6105.	7.1	186
20	Integrins \hat{l}^21 and \hat{l}^23 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nature Cell Biology, 2012, 14, 1057-1067.	10.3	339
21	Longâ€Range Transport of Giant Vesicles along Microtubule Networks. ChemPhysChem, 2012, 13, 1001-1006.	2.1	28
22	Short Gold Nanorod Growth Revisited: The Critical Role of the Bromide Counterion. ChemPhysChem, 2012, 13, 193-202.	2.1	72
23	Direct Investigation of Intracellular Presence of Gold Nanoparticles <i>via</i> Photothermal Heterodyne Imaging. ACS Nano, 2011, 5, 2587-2592.	14.6	84
24	Fluorescence Imaging of Single Kinesin Motors on Immobilized Microtubules. Methods in Molecular Biology, 2011, 783, 121-137.	0.9	27
25	Collective Behavior of Antagonistically Acting Kinesin-1 Motors. Physical Review Letters, 2010, 105, 128103.	7.8	34
26	Studying Kinesin Motors by Optical 3D-Nanometry in Gliding Motility Assays. Methods in Cell Biology, 2010, 95, 247-271.	1.1	47
27	Mechanism of membrane nanotube formation by molecular motors. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1418-1426.	2.6	51
28	Kinesin-8 Motors Act Cooperatively to Mediate Length-Dependent Microtubule Depolymerization. Cell, 2009, 138, 1174-1183.	28.9	263
29	Transport Of Micrometer-Sized Vesicles By Kinesin In Vitro. Biophysical Journal, 2009, 96, 131a.	0.5	0
30	Coordination of Kinesin Motors Pulling on Fluid Membranes. Biophysical Journal, 2008, 94, 5009-5017.	0.5	74
31	Detection of fractional steps in cargo movement by the collective operation of kinesin-1 motors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10847-10852.	7.1	132
32	Cooperative extraction of membrane nanotubes by molecular motors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17096-17101.	7.1	258