Anna Iwaniak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/32602/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	BIOPEP-UWM Virtual—A Novel Database of Food-Derived Peptides with In Silico-Predicted Biological Activity. Applied Sciences (Switzerland), 2022, 12, 7204.	1.3	14
2	Databases of bioactive peptides. , 2021, , 309-330.		4
3	Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using Biological and Chemical Codes. Molecules, 2021, 26, 712.	1.7	4
4	New Trends in Environmental Engineering, Agriculture, Food Production, and Analysis. Applied Sciences (Switzerland), 2021, 11, 2745.	1.3	1
5	Gouda Cheese with Modified Content of β-Casein as a Source of Peptides with ACE- and DPP-IV-Inhibiting Bioactivity: A Study Based on In Silico and In Vitro Protocol. International Journal of Molecular Sciences, 2021, 22, 2949.	1.8	14
6	Characteristics of Biopeptides Released In Silico from Collagens Using Quantitative Parameters. Foods, 2020, 9, 965.	1.9	28
7	Metabolic Syndrome-Preventive Peptides Derived from Milk Proteins and Their Presence in Cheeses: A Review. Applied Sciences (Switzerland), 2020, 10, 2772.	1.3	19
8	Soybean (Glycine max) Protein Hydrolysates as Sources of Peptide Bitter-Tasting Indicators: An Analysis Based on Hybrid and Fragmentomic Approaches. Applied Sciences (Switzerland), 2020, 10, 2514.	1.3	15
9	Elucidation of the role of in silico methodologies in approaches to studying bioactive peptides derived from foods. Journal of Functional Foods, 2019, 61, 103486.	1.6	52
10	Free Accessible Databases as a Source of Information about Food Components and Other Compounds with Anticancer Activity–Brief Review. Molecules, 2019, 24, 789.	1.7	6
11	Structure–Activity Prediction of ACE Inhibitory/Bitter Dipeptides—A Chemometric Approach Based on Stepwise Regression. Molecules, 2019, 24, 950.	1.7	13
12	BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. International Journal of Molecular Sciences, 2019, 20, 5978.	1.8	454
13	Understanding the nature of bitter-taste di- and tripeptides derived from food proteins based on chemometric analysis. Journal of Food Biochemistry, 2019, 43, e12500.	1.2	38
14	Introducing a Simple Equation To Express Oxidation States as an Alternative to Using Rules Associated with Words Alone. Journal of Chemical Education, 2018, 95, 340-342.	1.1	3
15	Databases and Associated Bioinformatic Tools in Studies of Food Allergens, Epitopes and Haptens – a Review. Polish Journal of Food and Nutrition Sciences, 2018, 68, 103-113.	0.6	3
16	Peptides Derived from Foods as Supportive Diet Components in the Prevention of Metabolic Syndrome. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 63-81.	5.9	39
17	Structural characteristics of food protein-originating di- and tripeptides using principal component analysis. European Food Research and Technology, 2018, 244, 1751-1758.	1.6	17
18	Annotation of Peptide Structures Using SMILES and Other Chemical Codes–Practical Solutions. Molecules, 2017, 22, 2075.	1.7	11

Anna Iwaniak

#	Article	IF	CITATIONS
19	Internet Databases of the Properties, Enzymatic Reactions, and Metabolism of Small Molecules—Search Options and Applications in Food Science. International Journal of Molecular Sciences, 2016, 17, 2039.	1.8	20
20	BIOPEP database of sensory peptides and amino acids. Food Research International, 2016, 85, 155-161.	2.9	116
21	Angiotensin I-converting enzyme inhibitory peptides in oat (Avena sativa L.) proteins-derived digests – In silico and in vitro study. New Biotechnology, 2016, 33, S173.	2.4	2
22	Food protein-originating peptides as tastants - Physiological, technological, sensory, and bioinformatic approaches. Food Research International, 2016, 89, 27-38.	2.9	74
23	Common Amino Acid Subsequences in a Universal Proteome—Relevance for Food Science. International Journal of Molecular Sciences, 2015, 16, 20748-20773.	1.8	23
24	Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. Journal of Functional Foods, 2015, 16, 334-351.	1.6	74
25	Ex vivo digestion of carp muscle tissue – ACE inhibitory and antioxidant activities of the obtained hydrolysates. Food and Function, 2015, 6, 210-217.	2.1	24
26	Using Internet Databases for Food Science Organic Chemistry Students To Discover Chemical Compound Information. Journal of Chemical Education, 2015, 92, 874-876.	1.1	14
27	BIOLOGICALLY ACTIVE PEPTIDES FROM FOOD PROTEINS: IN SILICO , IN VITRO AND IN VIVO STUDIES, APPLICATION ASPECTS, AND SAFETY EVALUATION. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2015, , .	0.1	1
28	BIOLOGICALLY ACTIVE PEPTIDES RELEASED FROM FOOD PROTEINS. Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality, 2015, 21, .	0.1	2
29	Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar) Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes. International Journal of Molecular Sciences, 2014, 15, 14077-14101.	1.8	60
30	Foodâ€Originating ACE Inhibitors, Including Antihypertensive Peptides, as Preventive Food Components in Blood Pressure Reduction. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 114-134.	5.9	239
31	Analysis of Domains in Selected Plant and Animal Food Proteins - Precursors of Biologically Active Peptides - In Silico Approach. Food Science and Technology International, 2009, 15, 179-191.	1.1	13
32	BIOPEP Database and Other Programs for Processing Bioactive Peptide Sequences. Journal of AOAC INTERNATIONAL, 2008, 91, 965-980.	0.7	454
33	BIOPEP database and other programs for processing bioactive peptide sequences. Journal of AOAC INTERNATIONAL, 2008, 91, 965-80.	0.7	131
34	The BIOPEP database - a tool for the in silico method of classification of food proteins as the source of peptides with antihypertensive activity. Acta Alimentaria, 2005, 34, 417-425.	0.3	21
35	Structural properties of proteolytic-accessible bioactive fragments of selected animal proteins. Polimery, 2005, 50, 424-428.	0.4	11
36	Bioinformatic-aided prediction for release possibilities of bioactive peptides from plant proteins. Acta Alimentaria, 2004, 33, 227-235.	0.3	31

#	Article	IF	CITATIONS
37	Computer-aided characteristics of proteins as potential precursors of bioactive peptides. Polimery, 2003, 48, 50-53.	0.4	58
38	Database of biologically active peptide sequences. Molecular Nutrition and Food Research, 1999, 43, 190-195.	0.0	90
39	Hybrid Approach in the Analysis of Bovine Milk Protein Hydrolysates as a Source of Peptides Containing Di- and Tripeptide Bitterness Indicators. Polish Journal of Food and Nutrition Sciences, 0, , 139-150.	0.6	12