List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3260193/publications.pdf Version: 2024-02-01

ENDIOLIE AMAVA

#	Article	IF	CITATIONS
1	PPIA and YWHAZ Constitute a Stable Pair of Reference Genes during Electrical Stimulation in Mesenchymal Stem Cells. Applied Sciences (Switzerland), 2022, 12, 153.	2.5	1
2	How to Grow <i>Xenopus laevis</i> Tadpole Stages to Adult. Cold Spring Harbor Protocols, 2021, 2021, pdb.prot106245.	0.3	3
3	Selective Inhibition of Heparan Sulphate and Not Chondroitin Sulphate Biosynthesis by a Small, Soluble Competitive Inhibitor. International Journal of Molecular Sciences, 2021, 22, 6988.	4.1	4
4	Reactive oxygen species during heart regeneration in zebrafish: Lessons for future clinical therapies. Wound Repair and Regeneration, 2021, 29, 211-224.	3.0	8
5	Model systems for regeneration: <i>Xenopus</i> . Development (Cambridge), 2020, 147, .	2.5	39
6	Investigating the Cellular and Molecular Mechanisms of Wound Healing in Xenopus Oocytes and Embryos. Cold Spring Harbor Protocols, 2019, 2019, pdb.prot100982.	0.3	1
7	Zebrafish <i>duox</i> mutations provide a model for human congenital hypothyroidism. Biology Open, 2019, 8, .	1.2	20
8	Ca2+-Induced Mitochondrial ROS Regulate the Early Embryonic Cell Cycle. Cell Reports, 2018, 22, 218-231.	6.4	76
9	Whole-Mount In Situ Hybridization and a Genotyping Method on Single Xenopus Embryos. , 2017, , 41-56.		2
10	Xenopus as a Model Organism for Biomedical Research. , 2017, , 263-290.		2
11	The cellular and molecular mechanisms of tissue repair and regeneration as revealed by studies in <i>Xenopus</i> . Regeneration (Oxford, England), 2016, 3, 198-208.	6.3	29
12	Assessing Primary Neurogenesis in Xenopus Embryos Using Immunostaining. Journal of Visualized Experiments, 2016, , e53949.	0.3	2
13	Seeing is believing. ELife, 2016, 5, .	6.0	1
14	NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1386-1391.	7.1	49
15	Xenopus: An in vivo model for imaging the inflammatory response following injury and bacterial infection. Developmental Biology, 2015, 408, 213-228.	2.0	40
16	Fezf2 promotes neuronal differentiation through localised activation of Wnt/β-catenin signalling during forebrain development. Development (Cambridge), 2014, 141, 4794-4805.	2.5	44
17	A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis. Development (Cambridge), 2014, 141, 1514-1525.	2.5	70
18	Carbohydrate metabolism during vertebrate appendage regeneration: What is its role? How is it regulated?. BioEssays, 2014, 36, 27-33.	2.5	43

#	Article	IF	CITATIONS
19	Tadpole tail regeneration in <i>Xenopus</i> . Biochemical Society Transactions, 2014, 42, 617-623.	3.4	24
20	Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nature Cell Biology, 2013, 15, 222-228.	10.3	416
21	Erk and PI3K temporally coordinate different modes of actin-based motility during embryonic wound healing. Journal of Cell Science, 2013, 126, 5005-17.	2.0	42
22	Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11029-11034.	7.1	35
23	Thyrotropin-Releasing Hormone (TRH) Promotes Wound Re-Epithelialisation in Frog and Human Skin. PLoS ONE, 2013, 8, e73596.	2.5	46
24	A Functional Genome-Wide In Vivo Screen Identifies New Regulators of Signalling Pathways during Early Xenopus Embryogenesis. PLoS ONE, 2013, 8, e79469.	2.5	7
25	Highly efficient bi-allelic mutation rates using TALENs in <i>Xenopus tropicalis</i> . Biology Open, 2012, 1, 1273-1276.	1.2	69
26	pTransgenesis: a cross-species, modular transgenesis resource. Development (Cambridge), 2011, 138, 5451-5458.	2.5	52
27	Genome-wide analysis of gene expression during Xenopus tropicalis tadpole tail regeneration. BMC Developmental Biology, 2011, 11, 70.	2.1	74
28	Production of Transgenic Xenopus laevis by Restriction Enzyme Mediated Integration and Nuclear Transplantation. Journal of Visualized Experiments, 2010, , .	0.3	8
29	<i>cis</i> -Regulatory Remodeling of the <i>SCL</i> Locus during Vertebrate Evolution. Molecular and Cellular Biology, 2010, 30, 5741-5751.	2.3	17
30	Characterisation of a new regulator of BDNF signalling, Sprouty3, involved in axonal morphogenesis in vivo. Development (Cambridge), 2010, 137, 4005-4015.	2.5	36
31	The Genome of the Western Clawed Frog <i>Xenopus tropicalis</i> . Science, 2010, 328, 633-636.	12.6	708
32	Germ layer specification and axial patterning in the embryonic development of the freshwater planarian Schmidtea polychroa. Developmental Biology, 2010, 340, 145-158.	2.0	51
33	FGF signalling: diverse roles during early vertebrate embryogenesis. Development (Cambridge), 2010, 137, 3731-3742.	2.5	248
34	Temporal and spatial expression of FGF ligands and receptors during <i>Xenopus</i> development. Developmental Dynamics, 2009, 238, 1467-1479.	1.8	61
35	C/EBPÎ \pm initiates primitive myelopoiesis in pluripotent embryonic cells. Blood, 2009, 114, 40-48.	1.4	31
36	spib is required for primitive myeloid development in Xenopus. Blood, 2008, 112, 2287-2296.	1.4	63

#	Article	IF	CITATIONS
37	Maintenance of motor neuron progenitors in Xenopus requires a novel localized cyclin. EMBO Reports, 2007, 8, 287-292.	4.5	10
38	Xenomics. Genome Research, 2005, 15, 1683-1691.	5.5	38
39	FGF Signal Interpretation Is Directed by Sprouty and Spred Proteins during Mesoderm Formation. Developmental Cell, 2005, 8, 689-701.	7.0	132
40	1.15 Ã Crystal structure of theX. tropicalisSpred1 EVH1 domain suggests a fourth distinct peptide-binding mechanism within the EVH1 family. FEBS Letters, 2005, 579, 1161-1166.	2.8	19
41	A Xenopus tropicalis oligonucleotide microarray works across species using RNA from Xenopus laevis. Mechanisms of Development, 2005, 122, 355-363.	1.7	36
42	Expression cloning screening of a unique and full-length set of cDNA clones is an efficient method for identifying genes involved in Xenopus neurogenesis. Mechanisms of Development, 2005, 122, 289-306.	1.7	27
43	Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus. Mechanisms of Development, 2005, 122, 307-331.	1.7	30
44	Pilot morpholino screen inXenopus tropicalisidentifies a novel gene involved in head development. Developmental Dynamics, 2004, 229, 289-299.	1.8	53
45	Defining a large set of full-length clones from a Xenopus tropicalis EST project. Developmental Biology, 2004, 271, 498-516.	2.0	111
46	Novel gene expression domains reveal early patterning of the Xenopus endoderm. Gene Expression Patterns, 2003, 3, 509-519.	0.8	27
47	Local Tissue Interactions across the Dorsal Midline of the Forebrain Establish CNS Laterality. Neuron, 2003, 39, 423-438.	8.1	175
48	Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1377-1382.	7.1	98
49	Techniques and probes for the study ofXenopus tropicalis development. Developmental Dynamics, 2002, 225, 499-510.	1.8	240
50	A Role for BMP Signalling in Heart Looping Morphogenesis in Xenopus. Developmental Biology, 2001, 232, 191-203.	2.0	71
51	Transgenic Xenopus Embryos Reveal That Anterior Neural Development Requires Continued Suppression of BMP Signaling after Gastrulation. Developmental Biology, 2001, 238, 168-184.	2.0	71
52	Comparison of morpholino based translational inhibition during the development ofXenopus laevis andXenopus tropicalis. Genesis, 2001, 30, 110-113.	1.6	78
53	Xenopus Sprouty2 inhibits FGF-mediated gastrulation movements but does not affect mesoderm induction and patterning. Genes and Development, 2001, 15, 1152-1166.	5.9	141
54	Analysis of vertebrate SCL loci identifies conserved enhancers. Nature Biotechnology, 2000, 18, 181-186.	17.5	162

#	Article	IF	CITATIONS
55	A Method for Generating Transgenic Frog Embryos. , 1999, 97, 393-414.		141
56	A gene trap approach in Xenopus. Current Biology, 1999, 9, 1195-S1.	3.9	80
57	Frog genetics: Xenopus tropicalis jumps into the future. Trends in Genetics, 1998, 14, 253-255.	6.7	158
58	Inhibition of FGF Receptor Activity in Retinal Ganglion Cell Axons Causes Errors in Target Recognition. Neuron, 1996, 17, 245-254.	8.1	137
59	Fibroblast growth factor receptors contain a conserved HAV region common to cadherins and influenza strain a hemagglutinins: A role in protein-protein interactions?. Developmental Biology, 1992, 152, 411-414.	2.0	47
60	Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in xenopus embryos. Cell, 1991, 66, 257-270.	28.9	1,102
61	UV-induced damage and repair in centromere DNA of yeast. Molecular Genetics and Genomics, 1987, 210, 16-22.	2.4	4