
Radoslaw Dobrowolski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3260073/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wnt Signaling Requires Sequestration of Glycogen Synthase Kinase 3 inside Multivesicular Endosomes. Cell, 2010, 143, 1136-1148.	13.5	618
2	The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans. Human Molecular Genetics, 2008, 17, 539-554.	1.4	157
3	Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nature Reviews Molecular Cell Biology, 2012, 13, 53-60.	16.1	149
4	Extracellular Ca ²⁺ Acts as a Mediator of Communication from Neurons to Glia. Science Signaling, 2012, 5, ra8.	1.6	135
5	Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Medicine, 2008, 6, 20.	2.3	130
6	Dysregulation of Nutrient Sensing and CLEARance in Presenilin Deficiency. Cell Reports, 2016, 14, 2166-2179.	2.9	115
7	Connexin-Caused Genetic Diseases and Corresponding Mouse Models. Antioxidants and Redox Signaling, 2009, 11, 283-296.	2.5	111
8	<scp>TOR</scp> â€mediated regulation of metabolism in aging. Aging Cell, 2017, 16, 1219-1233.	3.0	98
9	TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy, 2019, 15, 151-164.	4.3	95
10	Some Oculodentodigital Dysplasia-Associated Cx43 Mutations Cause Increased Hemichannel Activity in Addition to Deficient Gap Junction Channels. Journal of Membrane Biology, 2007, 219, 9-17.	1.0	93
11	Presenilin Deficiency or Lysosomal Inhibition Enhances Wnt Signaling through Relocalization of GSK3 to the Late-Endosomal Compartment. Cell Reports, 2012, 2, 1316-1328.	2.9	76
12	The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice. FASEB Journal, 2017, 31, 598-609.	0.2	57
13	The Connexin40A96S mutation from a patient with atrial fibrillation causes decreased atrial conduction velocities and sustained episodes of induced atrial fibrillation in mice. Journal of Molecular and Cellular Cardiology, 2013, 65, 19-32.	0.9	52
14	Mouse lens connexin23 (Gje1) does not form functional gap junction channels but causes enhanced ATP release from HeLa cells. European Journal of Cell Biology, 2009, 88, 65-77.	1.6	42
15	Human connexin31.9, unlike its orthologous protein connexin30.2 in the mouse, is not detectable in the human cardiac conduction system. Journal of Molecular and Cellular Cardiology, 2009, 46, 553-559.	0.9	41
16	The Connexin40 A96S Mutation Causes Renin-Dependent Hypertension. Journal of the American Society of Nephrology: JASN, 2011, 22, 1031-1040.	3.0	38
17	The TSG101 protein binds to connexins and is involved in connexin degradation. Experimental Cell Research, 2009, 315, 1053-1062.	1.2	36
18	Dual reporter approaches for identification of Cre efficacy and astrocyte heterogeneity. FASEB Journal 2012 26, 4576-4583	0.2	28

#	Article	IF	CITATIONS
19	Connexin45 Provides Optimal Atrioventricular Nodal Conduction in the Adult Mouse Heart. Circulation Research, 2012, 111, 1528-1538.	2.0	25
20	Lack of Laminin γ1 in Embryonic Stem Cell-Derived Cardiomyocytes Causes Inhomogeneous Electrical Spreading Despite Intact Differentiation and Function. Stem Cells, 2009, 27, 88-99.	1.4	24
21	The Connexin31 F137L mutant mouse as a model for the human skin disease Erythrokeratodermia variabilis (EKV). Human Molecular Genetics, 2007, 16, 1216-1224.	1.4	23
22	Pathogenic Tau Causes a Toxic Depletion of Nuclear Calcium. Cell Reports, 2020, 32, 107900.	2.9	23
23	Hepatomaâ€derived growth factor (<i>HDGF</i>) is dispensable for normal mouse development. Developmental Dynamics, 2008, 237, 1875-1885.	0.8	21
24	Age-Dependent Effects of ALK5 Inhibition and Mechanism of Neuroprotection in Neonatal Hypoxic-Ischemic Brain Injury. Developmental Neuroscience, 2017, 39, 338-351.	1.0	14
25	The role of nuclear Ca2+ in maintaining neuronal homeostasis and brain health. Journal of Cell Science, 2021, 134, .	1.2	13
26	Connexin43, but not connexin30, contributes to adult neurogenesis in the dentate gyrus. Brain Research Bulletin, 2018, 136, 91-100.	1.4	12
27	Rab8 attenuates Wnt signaling and is required for mesenchymal differentiation into adipocytes. Journal of Biological Chemistry, 2021, 296, 100488.	1.6	9
28	Moderately Inducing Autophagy Reduces Tertiary Brain Injury after Perinatal Hypoxia-Ischemia. Cells, 2021, 10, 898.	1.8	8
29	Cellular metabolism and lysosomal mTOR signaling. Cell Death in Therapy, 2015, 1, .	0.3	7
30	Mechanisms of tertiary neurodegeneration after neonatal hypoxic-ischemic brain damage. Pediatric Medicine, 0, 5, 28-28.	1.1	4
31	Amino acid metabolites, mTORC1 and aging. Aging, 2017, 9, 1641-1642.	1.4	0
32	RyR-ing up nuclear calcium signaling and CREB-mediated gene expression. Cell Calcium, 2021, 100, 102482.	1.1	0