Zhike Liu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/326003/zhike-liu-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

73	5,852	39	76
papers	citations	h-index	g-index
79 ext. papers	7,045 ext. citations	12.9 avg, IF	6.11 L-index

#	Paper	IF	Citations
73	Graded 2D/3D (CF3-PEA)2FA0.85MA0.15Pb2I7/FA0.85MA0.15PbI3 heterojunction for stable perovskite solar cell with an efficiency over 23.0%. <i>Journal of Energy Chemistry</i> , 2022 , 65, 480-489	12	11
72	Record-Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation <i>Advanced Materials</i> , 2022 , e2201681	24	39
71	Unraveling Passivation Mechanism of Imidazolium-Based Ionic Liquids on Inorganic Perovskite to Achieve Near-Record-Efficiency CsPbIBr Solar Cells. <i>Nano-Micro Letters</i> , 2021 , 14, 7	19.5	11
70	Simultaneous dual-interface and bulk defect passivation for high-efficiency and stable CsPbI2Br perovskite solar cells. <i>Journal of Power Sources</i> , 2021 , 492, 229580	8.9	7
69	Synergistic Effect of RbBr Interface Modification on Highly Efficient and Stable Perovskite Solar Cells. <i>ACS Omega</i> , 2021 , 6, 13766-13773	3.9	2
68	Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2021 , 31, 2005776	15.6	111
67	Room-temperature sputtered-SnO2 modified anode toward efficient TiO2-based planar perovskite solar cells. <i>Science China Technological Sciences</i> , 2021 , 64, 1995-2002	3.5	1
66	p-Type Carbon Dots for Effective Surface Optimization for Near-Record-Efficiency CsPbI Br Solar Cells. <i>Small</i> , 2021 , 17, e2102272	11	10
65	A Special Additive Enables All Cations and Anions Passivation for Stable Perovskite Solar Cells with Efficiency over 23. <i>Nano-Micro Letters</i> , 2021 , 13, 169	19.5	29
64	Decorating hole transport material with ICF3 groups for highly efficient and stable perovskite solar cells. <i>Journal of Energy Chemistry</i> , 2021 , 62, 523-531	12	7
63	Dual Passivation of Perovskite and SnO for High-Efficiency MAPbI Perovskite Solar Cells. <i>Advanced Science</i> , 2021 , 8, 2001466	13.6	25
62	Solvent Engineering Using a Volatile Solid for Highly Efficient and Stable Perovskite Solar Cells. <i>Advanced Science</i> , 2020 , 7, 1903250	13.6	29
61	Controlled n-Doping in Air-Stable CsPbI2Br Perovskite Solar Cells with a Record Efficiency of 16.79%. <i>Advanced Functional Materials</i> , 2020 , 30, 1909972	15.6	173
60	Synthesis and properties of triphenylamine functionalized tetrathiafulvalene. <i>Tetrahedron Letters</i> , 2020 , 61, 151949	2	2
59	27%-Efficiency Four-Terminal Perovskite/Silicon Tandem Solar Cells by Sandwiched Gold Nanomesh. <i>Advanced Functional Materials</i> , 2020 , 30, 1908298	15.6	62
58	NaCl-assisted defect passivation in the bulk and surface of TiO2 enhancing efficiency and stability of planar perovskite solar cells. <i>Journal of Power Sources</i> , 2020 , 448, 227586	8.9	17
57	Improvement of Colloidal Characteristics in a Precursor Solution by a PbI-(DMSO) Complex for Efficient Nonstoichiometrically Prepared CsPbIBr Perovskite Solar Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 48756-48764	9.5	3

(2019-2020)

56	Beach-Chair-Shaped Energy Band Alignment for High-Performance EcsPbI3 Solar Cells. <i>Cell Reports Physical Science</i> , 2020 , 1, 100180	6.1	18
55	Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. <i>Energy and Environmental Science</i> , 2020 , 13, 5068-5079	35.4	61
54	Synthesis of fused conjugated polymers containing imidazo[2,1-b]thiazole units by multicomponent one-pot polymerization. <i>Polymer Chemistry</i> , 2020 , 11, 5200-5206	4.9	5
53	An efficient phenylaminecarbazole-based three-dimensional hole-transporting materials for high-stability perovskite solar cells. <i>Dyes and Pigments</i> , 2020 , 182, 108663	4.6	2
52	2D Cs2PbI2Cl2 Nanosheets for Holistic Passivation of Inorganic CsPbI2Br Perovskite Solar Cells for Improved Efficiency and Stability. <i>Advanced Energy Materials</i> , 2020 , 10, 2002882	21.8	58
51	Metal-Free Halide Perovskite Single Crystals with Very Long Charge Lifetimes for Efficient X-ray Imaging. <i>Advanced Materials</i> , 2020 , 32, e2003353	24	33
50	Precursor Engineering for Ambient-Compatible Antisolvent-Free Fabrication of High-Efficiency CsPbI2Br Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 2000691	21.8	68
49	A Novel Anion Doping for Stable CsPbI2Br Perovskite Solar Cells with an Efficiency of 15.56% and an Open Circuit Voltage of 1.30 V. <i>Advanced Energy Materials</i> , 2019 , 9, 1902279	21.8	105
48	Scalable Ambient Fabrication of High-Performance CsPbI2Br Solar Cells. <i>Joule</i> , 2019 , 3, 2485-2502	27.8	94
47	Interfacial Engineering at the 2D/3D Heterojunction for High-Performance Perovskite Solar Cells. <i>Nano Letters</i> , 2019 , 19, 7181-7190	11.5	110
46	NbF5: A Novel ⊕hase Stabilizer for FA-Based Perovskite Solar Cells with High Efficiency. <i>Advanced Functional Materials</i> , 2019 , 29, 1807850	15.6	97
45	Novel Surface Passivation for Stable FA0.85MA0.15PbI3 Perovskite Solar Cells with 21.6% Efficiency. <i>Solar Rrl</i> , 2019 , 3, 1900072	7.1	49
44	Oxidation, reduction, and inert gases plasma-modified defects in TiO2 as electron transport layer for planar perovskite solar cells. <i>Journal of CO2 Utilization</i> , 2019 , 32, 46-52	7.6	8
43	Introduction of Fluorine Into spiro[fluorene-9,9?-xanthene]-Based Hole Transport Material to Obtain Sensitive-Dopant-Free, High Efficient and Stable Perovskite Solar Cells. <i>Solar Rrl</i> , 2019 , 3, 18003	5 2 :1	30
42	Water-Soluble Triazolium Ionic-Liquid-Induced Surface Self-Assembly to Enhance the Stability and Efficiency of Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1900417	15.6	102
41	Highly efficient and stable planar CsPbI2Br perovskite solar cell with a new sensitive-dopant-free hole transport layer obtained via an effective surface passivation. <i>Solar Energy Materials and Solar Cells</i> , 2019 , 201, 110052	6.4	30
40	Additive Engineering to Grow Micron-Sized Grains for Stable High Efficiency Perovskite Solar Cells. <i>Advanced Science</i> , 2019 , 6, 1901241	13.6	60
39	A High Mobility Conjugated Polymer Enables Air and Thermally Stable CsPbI2Br Perovskite Solar Cells with an Efficiency Exceeding 15%. <i>Advanced Materials Technologies</i> , 2019 , 4, 1900311	6.8	39

38	Simultaneous Cesium and Acetate Coalloying Improves Efficiency and Stability of FA0.85MA0.15PbI3 Perovskite Solar Cell with an Efficiency of 21.95%. <i>Solar Rrl</i> , 2019 , 3, 1900220	7.1	50
37	Europium and Acetate Co-doping Strategy for Developing Stable and Efficient CsPbI Br Perovskite Solar Cells. <i>Small</i> , 2019 , 15, e1904387	11	61
36	Dynamical Transformation of Two-Dimensional Perovskites with Alternating Cations in the Interlayer Space for High-Performance Photovoltaics. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2684-2694	16.4	135
35	Controlled defects and enhanced electronic extraction in fluorine-incorporated zinc oxide for high-performance planar perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 182, 263-27	16.4	32
34	Low-temperature and facile solution-processed two-dimensional TiS2 as an effective electron transport layer for UV-stable planar perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 913	2-913	3 ⁵⁶
33	Bifunctional Hydroxylamine Hydrochloride Incorporated Perovskite Films for Efficient and Stable Planar Perovskite Solar Cells. <i>ACS Applied Energy Materials</i> , 2018 , 1, 900-909	6.1	55
32	Synthesis and Properties of Dithiafulvenyl Functionalized Spiro[fluorene-9,9Sxanthene] Molecules. <i>Organic Letters</i> , 2018 , 20, 780-783	6.2	24
31	Stoichiometry control of sputtered zinc oxide films by adjusting Ar/O2 gas ratios as electron transport layers for efficient planar perovskite solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 178, 200-207	6.4	16
30	Precursor Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with 14.78% Efficiency. <i>Advanced Functional Materials</i> , 2018 , 28, 1803269	15.6	206
29	Photonics and Optoelectronics of Low-Dimensional Materials. <i>Advances in Condensed Matter Physics</i> , 2018 , 2018, 1-2	1	
28	Low Temperature Fabrication for High Performance Flexible CsPbIBr Perovskite Solar Cells. <i>Advanced Science</i> , 2018 , 5, 1801117	13.6	71
27	Detection of Bisphenol A Using DNA-Functionalized Graphene Field Effect Transistors Integrated in Microfluidic Systems. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 23522-23528	9.5	22
26	Air and thermally stable perovskite solar cells with CVD-graphene as the blocking layer. <i>Nanoscale</i> , 2017 , 9, 8274-8280	7.7	49
25	Room-Temperature Processed NbO as the Electron-Transporting Layer for Efficient Planar Perovskite Solar Cells. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 23181-23188	9.5	100
24	Magnetic Field-Assisted Perovskite Film Preparation for Enhanced Performance of Solar Cells. <i>ACS Applied Materials & District Material</i>	9.5	20
23	Enhancing Efficiency and Stability of Perovskite Solar Cells through Nb-Doping of TiO at Low Temperature. <i>ACS Applied Materials & Doping State </i>	9.5	150
22	CO Plasma-Treated TiO Film as an Effective Electron Transport Layer for High-Performance Planar Perovskite Solar Cells. <i>ACS Applied Materials & District Materials & Material</i>	9.5	30
21	Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. <i>Light: Science and Applications</i> , 2017 , 6, e17023	16.7	203

20	High-Performance, Self-Powered Photodetectors Based on Perovskite and Graphene. <i>ACS Applied Materials & District Amplied & District Amplied</i>	9.5	69
19	Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. <i>Nano Energy</i> , 2016 , 28, 151-157	17.1	158
18	Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. <i>Nature Communications</i> , 2016 , 7, 11105	17.4	389
17	Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes. <i>Advanced Materials</i> , 2015 , 27, 3632-8	24	387
16	Neutral-Color Semitransparent Organic Solar Cells with All-Graphene Electrodes. <i>ACS Nano</i> , 2015 , 9, 12026-34	16.7	114
15	Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. <i>Chemical Society Reviews</i> , 2015 , 44, 5638-79	58.5	238
14	High-Performance Dopamine Sensors Based on Whole-Graphene Solution-Gated Transistors. <i>Advanced Functional Materials</i> , 2014 , 24, 978-985	15.6	112
13	High-Performance Hole-Extraction Layer of Sol G el-Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells. <i>Angewandte Chemie</i> , 2014 , 126, 12779-12783	3.6	158
12	Package-free flexible organic solar cells with graphene top electrodes. <i>Advanced Materials</i> , 2013 , 25, 4296-301	24	229
11	Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. <i>Advanced Materials</i> , 2012 , 24, 5878-83	24	579
10	The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells. <i>ACS Nano</i> , 2012 , 6, 810-8	16.7	270
9	Dithiafulvenyl unit as a new donor for high-efficiency dye-sensitized solar cells: synthesis and demonstration of a family of metal-free organic sensitizers. <i>Organic Letters</i> , 2012 , 14, 2214-7	6.2	116
8	The Application of Bismuth-Based Oxides in Organic-Inorganic Hybrid Photovoltaic Devices. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 1944-1948	3.8	23
7	Photovoltaic effect of BiFeO3/poly(3-hexylthiophene) heterojunction. <i>Physica Status Solidi - Rapid Research Letters</i> , 2011 , 5, 367-369	2.5	17
6	Enhanced photovoltaic performance of polymer solar cells by adding fullerene end-capped polyethylene glycol. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6848		64
5	High efficient ultraviolet photocatalytic activity of BiFeO3 nanoparticles synthesized by a chemical coprecipitation process. <i>Journal of Materials Science: Materials in Electronics</i> , 2010 , 21, 380-384	2.1	78
4	Urea Derivative-Promoted CsPbI2Br Perovskite Solar Cells with High Open-Circuit Voltage. <i>Solar Rrl</i> ,210	1 /0 <u>/</u> 57	2
3	Symmetrical Acceptor D onor A cceptor Molecule as a Versatile Defect Passivation Agent toward Efficient FA 0.85 MA 0.15 PbI 3 Perovskite Solar Cells. <i>Advanced Functional Materials</i> ,2112032	15.6	11

A Key 2D Intermediate Phase for Stable High-Efficiency CsPbI2Br Perovskite Solar Cells. *Advanced Energy Materials*,2103019

21.8 12

Fluorine Functionalized MXene QDs for Near-Record-Efficiency CsPbI 3 Solar Cell with High Open-Circuit Voltage. *Advanced Functional Materials*,2203704

15.6 9