

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3259900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Benzene-1,3,5-Tricarboxylate Ligand in CuO–CeO2 Catalysts Derived from Metal–Organic Frameworks for Carbon Monoxide Oxidation. Catalysis Letters, 2023, 153, 219-229.	2.6	1
2	AgPd Nanoparticles Anchored on TiO ₂ Derived from a Titanium Metal–Organic Framework for Efficient Dehydrogenation of Formic Acid. ChemCatChem, 2022, 14, .	3.7	7
3	Efficient Catalytic Transfer Hydrogenation of Acetophenone to 1-Phenylethanol over Cu–Zn–Al Catalysts. Industrial & Engineering Chemistry Research, 2022, 61, 5419-5428.	3.7	4
4	A novel process for the synthesis of <i>p</i> â€aminophenol by transfer hydrogenation of nitrobenzene using formic acid as hydrogen source. Asia-Pacific Journal of Chemical Engineering, 2022, 17, .	1.5	2
5	Transesterification of Glycerol to Glycerol Carbonate over Mg-Zr Composite Oxide Prepared by Hydrothermal Process. Nanomaterials, 2022, 12, 1972.	4.1	4
6	Morphology effects of CeO2 for catalytic oxidation of formaldehyde. Journal of Environmental Chemical Engineering, 2022, 10, 108053.	6.7	17
7	Cu/ <scp>CuO_x</scp> @C for efficient selective transfer hydrogenation of furfural to furfuryl alcohol with formic acid. Journal of Chemical Technology and Biotechnology, 2022, 97, 3172-3182.	3.2	3
8	A highly efficient rod-like-CeO2-supported palladium catalyst for the oxidative carbonylation of glycerol to glycerol carbonate. RSC Advances, 2021, 11, 17072-17079.	3.6	5
9	Fabrication and characterization of ZrO2 and ZrO2/SiO2 catalysts and their application in the synthesis of methyl N-phenyl carbamate: a study of the reaction mechanism by using in situ FT-IR spectroscopy. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 893-906.	1.7	3
10	Solubilities of Benzene, Toluene, and Ethylbenzene in Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2021, 66, 2460-2469.	1.9	4
11	The effect of adsorption and grafting on the acidity of [(HSO3)C3C1im]+[Cl]â^' on the surface of (SiO2)4O2H4 clusters. Journal of Molecular Graphics and Modelling, 2020, 96, 107528.	2.4	4
12	Polystyrene-Based Hierarchically Macro–Mesoporous Solid Acid: A Robust and Highly Efficient Catalyst for Indirect Hydration of Cyclohexene to Cyclohexanol by a One-Pot Method under Mild Conditions. Industrial & Engineering Chemistry Research, 2020, 59, 6435-6444.	3.7	10
13	Effect of Zr-doping on Pd/Ce Zr1â^'O2 catalysts for oxidative carbonylation of phenol. Chinese Journal of Chemical Engineering, 2020, 28, 2592-2599.	3.5	5
14	Oneâ€Pot Preparation of Methyl N â€Phenyl Carbamate and Zn(OAc) 2 /SiO 2 Catalyst with Enhanced Stability. ChemistrySelect, 2019, 4, 10581-10586.	1.5	1
15	Enhanced catalytic activity over palladium supported on ZrO ₂ @C with NaOH-assisted reduction for decomposition of formic acid. RSC Advances, 2019, 9, 3359-3366.	3.6	12
16	Pd catalyst supported on CeO ₂ nanotubes with enhanced structural stability toward oxidative carbonylation of phenol. RSC Advances, 2019, 9, 11356-11364.	3.6	7
17	Highly Reducible Nanostructured CeO2 for CO Oxidation. Catalysts, 2018, 8, 535.	3.5	11
18	The Induction Period and Novel Active Species in Zn(OAc)2 Catalyzed Synthesis of Aromatic Carbamates. Catalysis Letters, 2017, 147, 1478-1484.	2.6	8

Wei Xue

#	Article	IF	CITATIONS
19	Peanut Shell-Derived Carbon Solid Acid with Large Surface Area and Its Application for the Catalytic Hydrolysis of Cyclohexyl Acetate. Materials, 2016, 9, 833.	2.9	14
20	Esterification of cyclohexene with formic acid over a peanut shell-derived carbon solid acid catalyst. Chinese Journal of Catalysis, 2016, 37, 769-777.	14.0	25
21	Hydrolysis of cyclohexyl acetate to cyclohexanol with high selectivity over SO3H-functionalized ionic liquids. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 329-339.	1.7	8
22	Partial Hydrogenation of Benzene to Cyclohexene over Ru-Zn/MCM-41. Journal of Nanomaterials, 2015, 2015, 1-8.	2.7	2
23	The one-pot synthesis of methylene diphenyl-4,4′-dicarbamate. Chemical Engineering Science, 2015, 135, 217-222.	3.8	4
24	Oxidative carbonylation of phenol with a Pd-O/CeO2-nanotube catalyst. Chinese Journal of Catalysis, 2015, 36, 1142-1154.	14.0	23
25	Hydration of cyclohexene to cyclohexanol over SO3H-functionalized imidazole ionic liquids. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114, 173-183.	1.7	13
26	Investigation of supported Zn(OAc)2 catalyst and its stability in N-phenyl carbamate synthesis. Applied Catalysis A: General, 2014, 475, 355-362.	4.3	30
27	Preparation of Ru-[bmim]BF4 Catalyst Using NaBH4 as Reducing Agent and Its Performance in Selective Hydrogenation of Benzene. Chinese Journal of Catalysis, 2012, 33, 1913-1918.	14.0	5
28	Direct amination of toluene to toluidine with hydroxylamine over CuO–V2O5/Al2O3 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 377-391.	1.7	6
29	Clean synthesis of methyl Nâ€phenyl carbamate over ZnOâ€TiO ₂ catalyst. Journal of Chemical Technology and Biotechnology, 2009, 84, 48-53.	3.2	19
30	Effect of hydrazine hydrate on the Ru–Zn/SiO2 catalysts performance for partial hydrogenation of benzene. Catalysis Communications, 2009, 11, 29-33.	3.3	30
31	Synthesis of <i>p</i> â€aminophenol from the hydrogenation of nitrobenzene over metal–solid acid bifunctional catalyst. Journal of Chemical Technology and Biotechnology, 2008, 83, 1466-1471.	3.2	33
32	Catalytic synthesis of 1,6-dicarbamate hexane over MgO/ZrO2. Journal of Chemical Technology and Biotechnology, 2007, 82, 209-213.	3.2	14
33	Effect of promoter copper on the oxidative carbonylation of phenol over the ultrafine embedded catalyst PdCuO/SiO2. Journal of Molecular Catalysis A, 2005, 232, 77-81.	4.8	20
34	Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by ultrafine embedded catalyst Pd–Cu–O/SiO2. Catalysis Communications, 2005, 6, 431-436.	3.3	32
35	Theoretical study of decomposition of formic acid over <scp>Pd</scp> catalyst anchored on <scp>N</scp> â€doped graphene. International Journal of Quantum Chemistry, 0, , .	2.0	1
36	Catalyst-free <i>N</i> -methylation of 3-methylxanthine with dimethyl carbonate in water: green synthesis of theobromine. New Journal of Chemistry, 0, , .	2.8	0