Olivier Fontaine

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3259606/olivier-fontaine-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

41	2,112 citations	20	45
papers		h-index	g-index
46	2,520 ext. citations	10.8	5.11
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
41	MnO2-MXene Composite as Electrode for Supercapacitor. <i>Journal of the Electrochemical Society</i> , 2022 , 169, 030524	3.9	Ο
40	Water-in-salt electrolytes towards sustainable and cost-effective alternatives - Example for Zinc-ion batteries. <i>Current Opinion in Electrochemistry</i> , 2022 , 101070	7.2	0
39	Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation. <i>Nature Chemistry</i> , 2021 , 13, 465-471	17.6	18
38	Investigation of Electrochemical and Chemical Processes Occurring at Positive Potentials in Water-in-SaltiElectrolytes. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 050550	3.9	4
37	Can an Inorganic Coating Serve as Stable SEI for Aqueous Superconcentrated Electrolytes?. <i>ACS Energy Letters</i> , 2021 , 6, 2575-2583	20.1	7
36	3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 4159-4166	13	23
35	Constructing an efficient conductive network with carbon-based additives in metal hydroxide electrode for high-performance hybrid supercapacitor. <i>Electrochimica Acta</i> , 2021 , 397, 139242	6.7	1
34	Coulombic Force Gated Molecular Transport in Redox Flow Batteries. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 1374-1383	6.4	0
33	Competitive Salt Precipitation/Dissolution During Free-Water Reduction in Water-in-Salt Electrolyte. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 15913-15917	16.4	28
32	Competitive Salt Precipitation/Dissolution During Free-Water Reduction in Water-in-Salt Electrolyte. <i>Angewandte Chemie</i> , 2020 , 132, 16047-16051	3.6	11
31	Evaluation of the Properties of an Electrolyte Based on Formamide and LiTFSI for Electrochemical Capacitors. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 110508	3.9	3
30	Modifications of MXene layers for supercapacitors. <i>Nano Energy</i> , 2020 , 73, 104734	17.1	74
29	Water-in-Salt Electrolyte (WiSE) for Aqueous Batteries: A Long Way to Practicality. <i>Advanced Energy Materials</i> , 2020 , 10, 2002440	21.8	52
28	Shuttle Effect Quantification for Redox Ionic Liquid Electrolyte Correlated to the Coulombic Efficiency of Supercapacitors. <i>Batteries and Supercaps</i> , 2020 , 3, 1193-1200	5.6	1
27	Electrochemical study of asymmetric aqueous supercapacitors based on high density oxides: C/Ba0.5Sr0.5Co0.8Fe0.2O3-\(\bar{\textbf{l}}\) and FeWO4/Ba0.5Sr0.5Co0.8Fe0.2O3-\(\bar{\textbf{l}}\) Electrochimica Acta, 2019 , 326, 134886	6.7	2
26	A deeper understanding of the electron transfer is the key to the success of biredox ionic liquids. <i>Energy Storage Materials</i> , 2019 , 21, 240-245	19.4	6
25	Redox bucky gels: mixture of carbon nanotubes and room temperature redox ionic liquids. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13382-13388	13	4

(2013-2019)

24	Electrochemical investigations of Nb2O5/carbon materials from filter paper, microfibrillated and bacterial celluloses by sustainable reductive mineralization. <i>Electrochimica Acta</i> , 2019 , 313, 478-487	6.7	4
23	Singlet oxygen from cation driven superoxide disproportionation and consequences for aprotic metal D2 batteries. <i>Energy and Environmental Science</i> , 2019 , 12, 2559-2568	35.4	82
22	Transport Properties of Li-TFSI Water-in-Salt Electrolytes. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 10514-10521	3.4	39
21	Self-Limited Grafting of Sub-Monolayers via Diels-Alder Reaction on Glassy Carbon Electrodes: An Electrochemical Insight. <i>ACS Omega</i> , 2019 , 4, 20540-20546	3.9	6
20	Water-in-SaltIfor Supercapacitors: A Compromise between Voltage, Power Density, Energy Density and Stability. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A657-A663	3.9	83
19	Investigation of Ba0.5Sr0.5CoxFe1-xO3-las a pseudocapacitive electrode material with high volumetric capacitance. <i>Electrochimica Acta</i> , 2018 , 271, 677-684	6.7	8
18	Biredox ionic liquids: new opportunities toward high performance supercapacitors. <i>Faraday Discussions</i> , 2018 , 206, 393-404	3.6	24
17	PEO-Silsesquioxane Flexible Membranes: Organic-Inorganic Solid Electrolytes with Controlled Homogeneity and Nanostructure. <i>ChemistrySelect</i> , 2017 , 2, 2088-2093	1.8	7
16	Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium bxygen batteries. <i>Nature Energy</i> , 2017 , 2,	62.3	243
15	Mechanism and performance of lithium-oxygen batteries - a perspective. <i>Chemical Science</i> , 2017 , 8, 67	16964729	9 116
14	Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. <i>Nature Materials</i> , 2017 , 16, 446-453	27	233
13	Biredox ionic liquids: electrochemical investigation and impact of ion size on electron transfer. <i>Electrochimica Acta</i> , 2016 , 206, 513-523	6.7	27
12	Nanocomposites with both structural and porous hierarchy synthesized from Pickering emulsions. <i>New Journal of Chemistry</i> , 2016 , 40, 4344-4350	3.6	3
11	Synthesis of Titania@Carbon Nanocomposite from Urea-Impregnated Cellulose for Efficient Lithium and Sodium Batteries. <i>ChemSusChem</i> , 2016 , 9, 264-73	8.3	20
10	Multiwalled Carbon Nanotube/Cellulose Composite: From Aqueous Dispersions to Pickering Emulsions. <i>Langmuir</i> , 2016 , 32, 3907-16	4	24
9	Aprotic LiD2Battery: Influence of Complexing Agents on Oxygen Reduction in an Aprotic Solvent. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 3393-3401	3.8	33
8	Single-ion conductor nanocomposite organic[horganic hybrid membranes for lithium batteries. Journal of Materials Chemistry A, 2014 , 2, 12162-12165	13	27
7	Charging a Li-Olbattery using a redox mediator. <i>Nature Chemistry</i> , 2013 , 5, 489-94	17.6	675

6	Sol-gel route to zirconia-Pt-nanoelectrode arrays 8 nm in radius: their geometrical impact in mass transport. <i>Langmuir</i> , 2012 , 28, 3650-7	4	14
5	Ionic liquid viscosity effects on the functionalization of electrode material through the electroreduction of diazonium. <i>Langmuir</i> , 2010 , 26, 18542-9	4	57
4	Mass transport and heterogeneous electron transfer of a ferrocene derivative in a room-temperature ionic liquid. <i>Journal of Electroanalytical Chemistry</i> , 2009 , 632, 88-96	4.1	78
3	Formation of negative oxidation states of platinum and gold in redox ionic liquid: Electrochemical evidence. <i>Electrochemistry Communications</i> , 2008 , 10, 1205-1209	5.1	22
2	Modification of carbon electrode in ionic liquid through the reduction of phenyl diazonium salt. Electrochemical evidence in ionic liquid. <i>Electrochemistry Communications</i> , 2008 , 10, 1060-1063	5.1	44
1	An aqueous zinc-ion battery working at 80% enabled by low-concentration perchlorate-based chaotropic salt electrolyte. <i>EcoMat</i> ,	9.4	6