Klanarong Sriroth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3259585/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pyrodextrins from waxy and normal tapioca starches: Molecular structure and in vitro digestibility. Carbohydrate Polymers, 2021, 252, 117140.	10.2	19
2	Acrylamide in n onâ€centrifugal sugars and syrups. Journal of the Science of Food and Agriculture, 2021, 101, 4561-4569.	3.5	7
3	Effects of Inhibitors on Kinetic Properties of Invertase from Saccharomyces cerevisiae. Sugar Tech, 2020, 22, 274-283.	1.8	5
4	Antimicrobial Tendency of Bagasse Lignin Extracts by Raman Peak Intensity. Sugar Tech, 2020, 22, 697-705.	1.8	14
5	Selection of Protein-Rich Saccharomyces cerevisiae from Sugarcane Mills in Thailand for Feed and Food Applications. Sugar Tech, 2019, 21, 348-354.	1.8	4
6	Outstanding Characteristics of Thai Non-GM Bred Waxy Cassava Starches Compared with Normal Cassava Starch, Waxy Cereal Starches and Stabilized Cassava Starches. Plants, 2019, 8, 447.	3.5	11
7	Preparation of Superabsorbent Polymer from Sugarcane Bagasse via Extrusion Process. Sugar Tech, 2019, 21, 296-300.	1.8	8
8	Pullulanase Debranching of Various Starches Upgrades the Crystalline Structure and Thermostability of Starch‣auric Acid Complexes. Starch/Staerke, 2018, 70, 1700351.	2.1	9
9	Characterization of pectin extracted from banana peels of different varieties. Food Science and Biotechnology, 2018, 27, 623-629.	2.6	86
10	Superabsorbent Hydrogels From Rice Starches With Different Amylose Contents. Starch/Staerke, 2018, 70, 1700244.	2.1	9
11	Effect of Dry Heat Treatment With Xanthan Gum on Physicochemical Properties of Different Amylose Rice Starches. Starch/Staerke, 2018, 70, 1700142.	2.1	14
12	Research and Development Prospects for Sugarcane and Sugar Industry in Thailand. Sugar Tech, 2016, 18, 583-587.	1.8	10
13	Influence of reaction parameters on carboxymethylation of rice starches with varying amylose contents. Carbohydrate Polymers, 2015, 115, 186-192.	10.2	16
14	Thermal properties of esterified cassava starches and their maltodextrins in various water systems. Starch/Staerke, 2014, 66, 1022-1032.	2.1	6
15	Comparative study on physicochemical properties of ensete and water caltrop with other root, tuber, and legume starches. Starch/Staerke, 2013, 65, 1038-1050.	2.1	13
16	Lipid compositions of latex and sheet rubber from <i>Hevea brasiliensis</i> depend on clonal origin. European Journal of Lipid Science and Technology, 2013, 115, 1021-1031.	1.5	49
17	Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. Journal of Thermal Analysis and Calorimetry, 2012, 108, 1131-1139.	3.6	77
18	Ethanol Production Potential of Ethanol-Tolerant Saccharomyces and Non-Saccharomyces Yeasts. Polish Journal of Microbiology, 2012, 61, 219-221.	1.7	5

KLANARONG SRIROTH

#	Article	IF	CITATIONS
19	Effect of highâ€pressure microfluidization on the structure of cassava starch granule. Starch/Staerke, 2011, 63, 160-170.	2.1	64
20	Effect of calcium ions on ethanol production from molasses by Saccharomyces cerevisiae. Sugar Tech, 2010, 12, 120-124.	1.8	31
21	Physicochemical Properties of Oxidized Cassava Starch Prepared under Various Alkalinity Levels. Starch/Staerke, 2009, 61, 92-100.	2.1	72
22	A Study of the Internal Structure in Cassava and Rice Amylopectin. Starch/Staerke, 2009, 61, 557-569.	2.1	24
23	Granule Sizes of Canna (<i>Canna edulis</i>) Starches and their Reactivity Toward Hydration, Enzyme Hydrolysis and Chemical Substitution. Starch/Staerke, 2008, 60, 624-633.	2.1	20
24	The Role of Reaction Parameters on the Preparation and Properties of Carboxymethyl Cassava Starch. Starch/Staerke, 2005, 57, 84-93.	2.1	59
25	Transformation and Balance of Cyanogenic Compounds in the Cassava Starch Manufacturing Process. Starch/Staerke, 2005, 57, 71-78.	2.1	11
26	Some Physical and Chemical Properties of Starch Isolates of Cassava Genotypes. Starch/Staerke, 2004, 56, 413-418.	2.1	58
27	Hydration and physicochemical properties of small-particle cassava starch. Journal of the Science of Food and Agriculture, 2003, 83, 123-132.	3.5	24
28	Preparation and structural properties of small-particle cassava starch. Journal of the Science of Food and Agriculture, 2003, 83, 760-768.	3.5	26
29	Environmental conditions during root development: Drought constraint on cassava starch quality. Euphytica, 2001, 120, 95-102.	1.2	33
30	Cassava Starch Technology: The Thai Experience. Starch/Staerke, 2000, 52, 439-449.	2.1	88
31	Value Addition Through Diversification of the Sugar Industry from Farm to Mill. Sugar Tech, 0, , 1.	1.8	0