
GÃ-khan Yilmaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3259109/publications.pdf Version: 2024-02-01

<u>Γ.Δ_κηνη Υπωλγ</u>

#	Article	IF	CITATIONS
1	<i>Absolut</i> "copper catalyzation perfectedâ€; robust living polymerization of NIPAM: <i>Guinness</i> is good for SET-LRP. Polymer Chemistry, 2014, 5, 57-61.	1.9	80
2	Glyconanoparticles and their interactions with lectins. Polymer Chemistry, 2015, 6, 5503-5514.	1.9	78
3	Precision glycopolymers and their interactions with lectins. European Polymer Journal, 2013, 49, 3046-3051.	2.6	59
4	Natural cyclodextrins and their derivatives for polymer synthesis. Polymer Chemistry, 2020, 11, 7582-7602.	1.9	59
5	One Size Does Not Fit All: The Effect of Chain Length and Charge Density of Poly(ethylene imine) Based Copolymers on Delivery of pDNA, mRNA, and RepRNA Polyplexes. Biomacromolecules, 2018, 19, 2870-2879.	2.6	51
6	Single-Chain Glycopolymer Folding via Host–Guest Interactions and Its Unprecedented Effect on DC-SIGN Binding. Biomacromolecules, 2018, 19, 3040-3047.	2.6	49
7	Block-Sequence-Specific Glycopolypeptides with Selective Lectin Binding Properties. Biomacromolecules, 2017, 18, 1928-1936.	2.6	45
8	pH responsive glycopolymer nanoparticles for targeted delivery of anti-cancer drugs. Molecular Systems Design and Engineering, 2018, 3, 150-158.	1.7	43
9	Sequence and Architectural Control in Glycopolymer Synthesis. Macromolecular Rapid Communications, 2017, 38, 1700212.	2.0	38
10	Glycopolymer Code Based on Well-Defined Glycopolymers or Glyconanomaterials and Their Biomolecular Recognition. Frontiers in Bioengineering and Biotechnology, 2014, 2, 39.	2.0	33
11	Synthetic Routes to Single Chain Polymer Nanoparticles (SCNPs): Current Status and Perspectives. Macromolecular Rapid Communications, 2021, 42, e2100035.	2.0	32
12	Mannosylated Poly(ethylene imine) Copolymers Enhance saRNA Uptake and Expression in Human Skin Explants. Biomacromolecules, 2020, 21, 2482-2492.	2.6	30
13	The effect of linker length on ConA and DC-SIGN binding of <i>S</i> -glucosyl functionalized poly(2-oxazoline)s. Polymer Chemistry, 2018, 9, 611-618.	1.9	29
14	Magnetic glyconanoparticles for selective lectin separation and purification. Polymer Chemistry, 2019, 10, 3351-3361.	1.9	25
15	Synthetic Glycomacromolecules of Defined Valency, Absolute Configuration, and Topology Distinguish between Human Lectins. Jacs Au, 2021, 1, 1621-1630.	3.6	23
16	Poly(methacrylic acid)-Coated Gold Nanoparticles: Functional Platforms for Theranostic Applications. Biomacromolecules, 2016, 17, 2901-2911.	2.6	22
17	Bottlebrush Glycopolymers from 2-Oxazolines and Acrylamides for Targeting Dendritic Cell-Specific Intercellular Adhesion Molecule-3-Grabbing Nonintegrin and Mannose-Binding Lectin. Biomacromolecules, 2020, 21, 2298-2308.	2.6	22
18	Glyconanoparticles with controlled morphologies and their interactions with a dendritic cell lectin. Polymer Chemistry, 2016, 7, 6293-6296.	1.9	21

GÖkhan Yilmaz

#	Article	IF	CITATIONS
19	A new proton sponge polymer synthesized by RAFT polymerization for intracellular delivery of biotherapeutics. Polymer Chemistry, 2014, 5, 1593-1604.	1.9	20
20	Synthesis of Brushâ€Like Glycopolymers with Monodisperse, Sequenceâ€Defined Side Chains and Their Interactions with Plant and Animal Lectins. Macromolecular Rapid Communications, 2020, 41, e1900459.	2.0	16
21	Carbohydrates from Pseudomonas aeruginosa biofilms interact with immune C-type lectins and interfere with their receptor function. Npj Biofilms and Microbiomes, 2021, 7, 87.	2.9	16
22	Precise insertion of clickable monomer along polymer backbone by dynamic temperature controlled radical polymerization. European Polymer Journal, 2015, 62, 347-351.	2.6	12
23	Sequence Controlled Polymers from a Novel β yclodextrin Core. Macromolecular Rapid Communications, 2017, 38, 1700501.	2.0	12
24	Self-Assembled Multi- and Single-Chain Glyconanoparticles and Their Lectin Recognition. Biomacromolecules, 2021, 22, 661-670.	2.6	12
25	Hierarchy of Complex Glycomacromolecules: From Controlled Topologies to Biomedical Applications. Biomacromolecules, 2022, 23, 543-575.	2.6	12
26	Poly(triazolyl methacrylate) glycopolymers as potential targeted unimolecular nanocarriers. Nanoscale, 2019, 11, 21155-21166.	2.8	11
27	Effect of Arm Number and Length of Star-Shaped Glycopolymers on Binding to Dendritic and Langerhans Cell Lectins. Biomacromolecules, 2020, 21, 3756-3764.	2.6	11
28	Glycopolymer Code: Programming Synthetic Macromolecules for Biological Targeting. Macromolecular Chemistry and Physics, 2020, 221, 2000006.	1.1	9
29	Precisely targeted gene delivery in human skin using supramolecular cationic glycopolymers. Polymer Chemistry, 2020, 11, 3768-3774.	1.9	8
30	Stimuli-responsive glycopolymers and their biological applications. European Polymer Journal, 2021, 142, 110147.	2.6	8
31	One-pot synthesis of amphiphilic multiblock poly(2-oxazoline)s <i>via para</i> -fluoro-thiol click reactions. Polymer Chemistry, 2021, 12, 6392-6403.	1.9	8
32	Tobramycin-loaded complexes to prevent and disrupt Pseudomonas aeruginosa biofilms. Drug Delivery and Translational Research, 2022, 12, 1788-1810.	3.0	7
33	Hyaluronan (HA)-inspired glycopolymers as molecular tools for studying HA functions. RSC Chemical Biology, 2021, 2, 568-576.	2.0	4
34	Combining Inducible Lectin Expression and Magnetic Glyconanoparticles for the Selective Isolation of Bacteria from Mixed Populations. ACS Applied Materials & amp; Interfaces, 2021, 13, 19230-19243.	4.0	4
35	Design of Magnetic Graphene Oxide Containing Magnetically Stabilized Fluidized Bed System for Dopamine Adsorption in the Presence of Ascorbic Acid and Uric Acid. Separation Science and Technology, 2013, 48, 2608-2615.	1.3	1