
Shanshan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3258291/publications.pdf Version: 2024-02-01

SHANSHAN CHEN

#	Article	IF	CITATIONS
1	Particulate photocatalysts for overall water splitting. Nature Reviews Materials, 2017, 2, .	48.7	1,427
2	Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nature Catalysis, 2018, 1, 756-763.	34.4	390
3	A Tantalum Nitride Photoanode Modified with a Holeâ€Storage Layer for Highly Stable Solar Water Splitting. Angewandte Chemie - International Edition, 2014, 53, 7295-7299.	13.8	354
4	Interface Engineering of a CoO _{<i>x</i>} /Ta ₃ N ₅ Photocatalyst for Unprecedented Water Oxidation Performance under Visibleâ€Lightâ€Hradiation. Angewandte Chemie - International Edition, 2015, 54, 3047-3051.	13.8	254
5	Efficient Visibleâ€Lightâ€Driven Zâ€Scheme Overall Water Splitting Using a MgTa ₂ O _{6â``<i>x</i>} N _{<i>y</i>} â€%/TaON Heterostructure Photocatalyst for H ₂ Evolution. Angewandte Chemie - International Edition, 2015, 54, 8498-8501.	13.8	252
6	Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nature Communications, 2022, 13, 484.	12.8	156
7	Surface Strategies for Particulate Photocatalysts toward Artificial Photosynthesis. Joule, 2018, 2, 2260-2288.	24.0	146
8	Efficient Redox-Mediator-Free Z-Scheme Water Splitting Employing Oxysulfide Photocatalysts under Visible Light. ACS Catalysis, 2018, 8, 1690-1696.	11.2	127
9	Visible-Light-Driven Photocatalytic Water Splitting: Recent Progress and Challenges. Trends in Chemistry, 2020, 2, 813-824.	8.5	126
10	Sequential cocatalyst decoration on BaTaO2N towards highly-active Z-scheme water splitting. Nature Communications, 2021, 12, 1005.	12.8	124
11	Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta ₃ N ₅ as a H ₂ -evolving photocatalyst. Chemical Science, 2017, 8, 437-443.	7.4	110
12	Visible Light-Driven Z-Scheme Water Splitting Using Oxysulfide H ₂ Evolution Photocatalysts. Journal of Physical Chemistry Letters, 2016, 7, 3892-3896.	4.6	101
13	Nitrogen-doped layered oxide Sr5Ta4O15â^'xNx for water reduction and oxidation under visible light irradiation. Journal of Materials Chemistry A, 2013, 1, 5651.	10.3	89
14	Surface Modifications of (ZnSe) _{0.5} (CuGa _{2.5} Se _{4.25}) _{0.5} to Promote Photocatalytic Z-Scheme Overall Water Splitting. Journal of the American Chemical Society, 2021, 143, 10633-10641.	13.7	88
15	Photocatalyst Sheets Composed of Particulate LaMg _{1/3} Ta _{2/3} O ₂ N and Mo-Doped BiVO ₄ for Z-Scheme Water Splitting under Visible Light. ACS Catalysis, 2016, 6, 7188-7196.	11.2	79
16	A wide visible-light-responsive tunneled MgTa ₂ O _{6â^'x} N _x photocatalyst for water oxidation and reduction. Chemical Communications, 2014, 50, 14415-14417.	4.1	75
17	Metal selenide photocatalysts for visible-light-driven <i>Z</i> -scheme pure water splitting. Journal of Materials Chemistry A, 2019, 7, 7415-7422.	10.3	67
18	Magnesia interface nanolayer modification of Pt/Ta3N5 for promoted photocatalytic hydrogen production under visible light irradiation. Journal of Catalysis, 2016, 339, 77-83.	6.2	62

SHANSHAN CHEN

#	Article	IF	CITATIONS
19	Photoreduced Graphene Oxide as a Conductive Binder to Improve the Water Splitting Activity of Photocatalyst Sheets. Advanced Functional Materials, 2016, 26, 7011-7019.	14.9	62
20	Interface Engineering of a CoO _{<i>x</i>} /Ta ₃ N ₅ Photocatalyst for Unprecedented Water Oxidation Performance under Visible‣ight‣radiation. Angewandte Chemie, 2015, 127, 3090-3094.	2.0	48
21	Synthesis, Features, and Applications of Mesoporous Titania with TiO2(B). Chinese Journal of Catalysis, 2010, 31, 605-614.	14.0	36
22	Inhibiting competing reactions of iodate/iodide redox mediators by surface modification of photocatalysts to enable Z-scheme overall water splitting. Applied Catalysis B: Environmental, 2018, 224, 579-585.	20.2	33
23	Visibleâ€Lightâ€Driven Photocatalytic Zâ€Scheme Overall Water Splitting in La ₅ Ti ₂ AgS ₅ O ₇ â€based Powderâ€Suspension System. ChemSusChem, 2019, 12, 1906-1910.	6.8	29
24	Understanding the effect of partial N3â^'-to-O2â^' substitution and H+-to-K+ exchange on photocatalytic water reduction activity of Ruddlesden–Popper layered perovskite KLaTiO4. Molecular Catalysis, 2017, 432, 250-258.	2.0	22
25	Metal selenides for photocatalytic Z-scheme pure water splitting mediated by reduced graphene oxide. Chinese Journal of Catalysis, 2019, 40, 1668-1672.	14.0	21
26	Efficient photocatalytic hydrogen evolution on single-crystalline metal selenide particles with suitable cocatalysts. Chemical Science, 2020, 11, 6436-6441.	7.4	21
27	Plate-like Sm ₂ Ti ₂ S ₂ O ₅ Particles Prepared by a Flux-Assisted One-Step Synthesis for the Evolution of O ₂ from Aqueous Solutions by Both Photocatalytic and Photoelectrochemical Reactions. Journal of Physical Chemistry C, 2018, 122, 13492-13499.	3.1	18
28	Cocatalyst engineering of a narrow bandgap Ga-La ₅ Ti ₂ Cu _{0.9} Ag _{0.1} O ₇ S ₅ photocatalyst towards effectively enhanced water splitting. Journal of Materials Chemistry A, 2021, 9, 27485-27492.	10.3	16
29	Recent progress on photocatalysts with wide visible light range absorption for heterogeneous water splitting. Chinese Journal of Catalysis, 2014, 35, 1431-1432.	14.0	13
30	A Na-containing Pt cocatalyst for efficient visible-light-induced hydrogen evolution on BaTaO ₂ N. Journal of Materials Chemistry A, 2021, 9, 13851-13854.	10.3	13
31	Preparation and Characterization of Mesoporous MoO3/TiO2 Composite with High Surface Area by Self-Supporting and Ammonia Method. Catalysis Letters, 2012, 142, 480-485.	2.6	12
32	Oxidation of Carbon Monoxide over a Fibrous Titania-Supported Gold Catalyst. Chinese Journal of Catalysis, 2009, 30, 421-425.	14.0	10
33	Synthesis of a Ga-doped La5Ti2Cu0.9Ag0.107S5 photocatalyst by thermal sulfidation for hydrogen evolution under visible light. Journal of Catalysis, 2021, 399, 230-236.	6.2	10
34	A one-step synthesis of a Ta ₃ N ₅ nanorod photoanode from Ta plates and NH ₄ Cl powder for photoelectrochemical water oxidation. Chemical Communications, 2020, 56, 11843-11846.	4.1	6
35	Interfacial Engineering of NiMo/Mesoporous TiO2 Catalyst with Carbon for Enhanced Hydrodesulfurization Performance. Catalysis Letters, 2018, 148, 992-1002.	2.6	4
36	Highly Crystalline TiO ₂ Whisker Modified with Pt and Its Photocata-lytic Performance. Chinese Journal of Catalysis, 2010, 31, 1271-1276.	14.0	2

#	Article	IF	CITATIONS
37	Evidence of Kinetically Relevant Consistency in Thermal and Photoâ€Thermal HCOOH Decomposition over Pd/LaCrO ₃ /C ₃ N ₄ Composite. Chemistry - A European Journal, 2022, 28, .	3.3	1