
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3258151/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 220-225.	7.1	128
2	Habitat complexity facilitates coexistence in a tropical ant community. Oecologia, 2006, 149, 465-473.	2.0	121
3	Quantifying uncertainty in the potential distribution of an invasive species: climate and the Argentine ant. Ecology Letters, 2006, 9, 1068-1079.	6.4	107
4	Invasion Success and Management Strategies for Social <i>Vespula</i> Wasps. Annual Review of Entomology, 2019, 64, 51-71.	11.8	95
5	Determinants for the successful establishment of exotic ants in New Zealand. Diversity and Distributions, 2005, 11, 279-288.	4.1	75
6	Demersal fish community diversity off New Zealand: Is it related to depth, latitude and regional surface phytoplankton?. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 647-667.	1.4	74
7	Behavioural plasticity associated with propagule size, resources, and the invasion success of the Argentine ant <i>Linepithema humile</i> . Journal of Applied Ecology, 2009, 46, 19-27.	4.0	73
8	Functional and numerical responses do not always indicate the most effective predator for biological control: an analysis of two predators in a two-prey system. Journal of Applied Ecology, 2002, 39, 455-468.	4.0	72
9	The potential for the use of gene drives for pest control in New Zealand: a perspective. Journal of the Royal Society of New Zealand, 2018, 48, 225-244.	1.9	66
10	Long-Legged Ants, Anoplolepis gracilipes (Hymenoptera: Formicidae), Have Invaded Tokelau, Changing Composition and Dynamics of Ant and Invertebrate Communities. Pacific Science, 2004, 58, 391-401.	0.6	60
11	The widespread collapse of an invasive species: Argentine ants (<i>Linepithema humile</i>) in New Zealand. Biology Letters, 2012, 8, 430-433.	2.3	60
12	Changes in the Bacteriome of Honey Bees Associated with the Parasite Varroa destructor, and Pathogens Nosema and Lotmaria passim. Microbial Ecology, 2017, 73, 685-698.	2.8	55
13	Effects of riparian willow trees <i>(Salix fragilis)</i> on macroinvertebrate densities in two small Central Otago, New Zealand, streams. New Zealand Journal of Marine and Freshwater Research, 1994, 28, 267-276.	2.0	50
14	Temperature-dependent development of the Argentine ant, <i>Linepithema humile</i> (Mayr) (Hymenoptera: Formicidae): a degree-day model with implications for range limits in New Zealand New Zealand Entomologist, 2003, 26, 91-100.	0.3	50
15	Pathogen shifts in a honeybee predator following the arrival of the <i>Varroa</i> mite. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182499.	2.6	50
16	Booms, busts and population collapses in invasive ants. Biological Invasions, 2016, 18, 3091-3101.	2.4	48
17	Inferring historical introduction pathways with mitochondrial DNA: the case of introduced Argentine ants (<i>Linepithema humile</i>) into New Zealand. Diversity and Distributions, 2007, 13, 510-518.	4.1	45
18	Invasive ants carry novel viruses in their new range and form reservoirs for a honeybee pathogen. Biology Letters, 2015, 11, 20150610.	2.3	44

#	Article	IF	CITATIONS
19	Invasive ants compete with and modify the trophic ecology of hermit crabs on tropical islands. Oecologia, 2009, 160, 187-194.	2.0	42
20	A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132157.	2.6	42
21	Large scale unicoloniality: the population and colony structure of the invasive Argentine ant (Linepithema humile) in New Zealand. Insectes Sociaux, 2007, 54, 275-282.	1.2	40
22	Integrating physiology, population dynamics and climate to make multiâ€scale predictions for the spread of an invasive insect: the Argentine ant at Haleakala National Park, Hawaii. Ecography, 2010, 33, 83-94.	4.5	40
23	Behaviourally and genetically distinct populations of an invasive ant provide insight into invasion history and impacts on a tropical ant community. Biological Invasions, 2007, 9, 453-463.	2.4	39
24	Single-stranded RNA viruses infecting the invasive Argentine ant, Linepithema humile. Scientific Reports, 2017, 7, 3304.	3.3	39
25	No Evidence of Enemy Release in Pathogen and Microbial Communities of Common Wasps (Vespula) Tj ETQq1	1 0.784314 2.5	rggT /Overla
26	The potential for a CRISPR gene drive to eradicate or suppress globally invasive social wasps. Scientific Reports, 2020, 10, 12398.	3.3	32
27	Determining the origin of invasions and demonstrating a lack of enemy release from microsporidian pathogens in common wasps (<i>Vespula vulgaris</i>). Diversity and Distributions, 2014, 20, 964-974.	4.1	31
28	Fitness in invasive social wasps: the role of variation in viral load, immune response and paternity in predicting nest size and reproductive output. Oikos, 2017, 126, 1208-1218.	2.7	29
29	The longâ€ŧerm population dynamics of common wasps in their native and invaded range. Journal of Animal Ecology, 2017, 86, 337-347.	2.8	29
30	Some effects of pre-release host-plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Experimental and Applied Acarology, 2000, 24, 19-33.	1.6	28
31	Anthropogenic Landscape Change and Vectors in New Zealand: Effects of Shade and Nutrient Levels on Mosquito Productivity. EcoHealth, 2004, 1, 306.	2.0	27
32	Critical issues facing New Zealand entomology. New Zealand Entomologist, 2014, 37, 1-13.	0.3	27
33	Competitive assembly of South Pacific invasive ant communities. BMC Ecology, 2009, 9, 3.	3.0	26
34	Pretreatment Induced Thermotolerance in Lightbrown Apple Moth (Lepidoptera: Tortricidae) and Associated Induction of Heat Shock Protein Synthesis. Journal of Economic Entomology, 1997, 90, 199-204.	1.8	25
35	Argentine and other ants (Hymenoptera: Formicidae) in New Zealand horticultural ecosystems: distribution, hemipteran hosts, and review. New Zealand Entomologist, 2003, 26, 79-89.	0.3	25
36	Increased Larval Mosquito Densities from Modified Landuses in the Kapiti Region, New Zealand: Vegetation, Water Quality, and Predators as Associated Environmental Factors. EcoHealth, 2005, 2, 313-322.	2.0	25

#	Article	IF	CITATIONS
37	Trophic-level responses differ at plant, plot, and fragment levels in urban native forest fragments: a hierarchical analysis. Ecological Entomology, 2011, 36, 241-250.	2.2	25
38	Hot-water immersion for disinfestation of lightbrown apple moth (Epiphyas postvittana) and longtailed mealy bug (Pseudococcus longispinus) on persimmons. Postharvest Biology and Technology, 1995, 6, 349-356.	6.0	24
39	A novel interference behaviour: invasive wasps remove ants from resources and drop them from a height. Biology Letters, 2011, 7, 664-667.	2.3	24
40	A metatranscriptomic survey of the invasive yellow crazy ant, Anoplolepis gracilipes, identifies several potential viral and bacterial pathogens and mutualists. Insectes Sociaux, 2017, 64, 197-207.	1.2	24
41	Community level impacts of an ant invader and food mediated coexistence. Insectes Sociaux, 2007, 54, 166-173.	1.2	23
42	Modeling Spatial Variation of Russian Wheat Aphid Overwintering Population Densities in Colorado Winter Wheat. Journal of Economic Entomology, 2009, 102, 533-541.	1.8	23
43	Twenty years of Argentine ants in New Zealand: past research and future priorities for applied management. New Zealand Entomologist, 2010, 33, 68-78.	0.3	23
44	Whatever the Weather: Ambient Temperature Does Not Influence the Proportion of Males Born in New Zealand. PLoS ONE, 2011, 6, e25064.	2.5	23
45	The influence of nest availability on the abundance and diversity of twig-dwelling ants in a Papua New Guinea forest. Insectes Sociaux, 2010, 57, 333-341.	1.2	22
46	The origins of global invasions of the German wasp (Vespula germanica) and its infection with four honey bee viruses. Biological Invasions, 2018, 20, 3445-3460.	2.4	21
47	Different bacterial and viral pathogens trigger distinct immune responses in a globally invasive ant. Scientific Reports, 2019, 9, 5780.	3.3	21
48	Willow leaf and periphyton chemical composition, and the feeding preferences ofOlinga feredayi(Trichoptera: Conoesucidae). New Zealand Journal of Marine and Freshwater Research, 1994, 28, 13-18.	2.0	20
49	Abundance and Effects of Predators and Parasitoids on the Russian Wheat Aphid (Homoptera:) Tj ETQq1 1 0.78 360-368.	4314 rgBT 1.4	[Overlock]] 20
50	The influence of temperature and fineâ€scale resource distribution on resource sharing and domination in an ant community. Ecological Entomology, 2007, 32, 732-740.	2.2	20
51	Corruption, development and governance indicators predict invasive species risk from trade. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160901.	2.6	19
52	High-Quality Assemblies for Three Invasive Social Wasps from the Vespula Genus. G3: Genes, Genomes, Genetics, 2020, 10, 3479-3488.	1.8	19
53	Prevalence and genetic diversity of three bacterial endosymbionts (Wolbachia, Arsenophonus, and) Tj ETQq1 1 (2012, 59, 33-40.	0.784314 1.2	rgBT /Overloo 18
54	Hot air treatment for disinfestation of lightbrown apple moth and longtailed mealy bug on persimmons. Postharvest Biology and Technology, 1996, 8, 143-152.	6.0	17

#	Article	IF	CITATIONS
55	Patch and prey utilization behaviors by Aphelinus albipodus and Diaeretiella rapae (Hymenoptera:) Tj ETQq1 1 0. 24, 183-191.	784314 rgE 3.0	3T /Overlock 17
56	Sampling Efficacy for the Red Imported Fire Ant <i>Solenopsis invicta</i> (Hymenoptera: Formicidae). Environmental Entomology, 2011, 40, 1276-1284.	1.4	17
57	Behaviourally specialized foragers are less efficient and live shorter lives than generalists in wasp colonies. Scientific Reports, 2019, 9, 5366.	3.3	17
58	The Transfer of Typhlodromus pyri on Grape Leaves for Biological Control of Panonychus ulmi (Acari:) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf
59	Development of <i>Dermatophagoides pteronyssinus</i> (Acari: Pyroglyphidae) at Constant and Simultaneously Fluctuating Temperature and Humidity Conditions. Journal of Medical Entomology, 2005, 42, 266-269.	1.8	16
60	Increasing vineyard floral resources may not enhance localised biological control of the leafrollerEpiphyas postvittana(Lepidoptera: Tortricidae) byDolichogenideaspp. (Hymenoptera:) Tj ETQq0 0 0 rgB ⁻	Г/Obwerlock	1 û aTf 50 537
61	The ants of Tokelau. New Zealand Journal of Zoology, 2006, 33, 157-164.	1.1	16
62	Can adults of the New Zealand mosquito Culex pervigilans (Bergorth) detect the presence of a key predator in larval habitats?. Journal of Vector Ecology, 2010, 35, 100-105.	1.0	16
63	The conundrum of the yellow crazy ant (Anoplolepis gracilipes) reproductive mode: no evidence for dependent lineage genetic caste determination. Insectes Sociaux, 2013, 60, 135-145.	1.2	16
64	Two pathogens change cuticular hydrocarbon profiles but neither elicit a social behavioural change in infected honey bees, <scp><i>A</i></scp> <i>pis mellifera</i> (<scp>A</scp> pidae:) Tj ETQq0 0 0 rgBT /Overlo	ock1.140 Tf 50) ₿∂ 7 Td (<s< td=""></s<>
65	Symbiotic bacterial communities in ants are modified by invasion pathway bottlenecks and alter host behavior. Ecology, 2017, 98, 861-874.	3.2	16
66	Genetic Strain Diversity of Multi-Host RNA Viruses that Infect a Wide Range of Pollinators and Associates is Shaped by Geographic Origins. Viruses, 2020, 12, 358.	3.3	16
67	Pyrethroid Encapsulation for Conservation of Acarine Predators and Reduced Spider Mite (Acari:) Tj ETQq1 1 0.7	84314 rgB1 1.4	$\left[\begin{array}{c} 0 \\ 15 \end{array} \right]$
68	Synthetic pheromones as a management technique – dispensers reduce <i>Linepithema humile</i> activity in a commercial vineyard. Pest Management Science, 2016, 72, 719-724.	3.4	15
69	Behavioural variation and plasticity along an invasive ant introduction pathway. Journal of Animal Ecology, 2018, 87, 1653-1666.	2.8	15
70	Are exotic invaders less susceptible to native predators? A test using native and exotic mosquito species in New Zealand. Population Ecology, 2011, 53, 307-317.	1.2	14
71	Nest-based information transfer and foraging activation in the common wasp (Vespula vulgaris). Insectes Sociaux, 2015, 62, 207-217.	1.2	14
72	Postharvest disinfestation of lightbrown apple moth and longtailed mealybug on persimmons using heat and cold. Postharvest Biology and Technology, 1997, 12, 255-264.	6.0	13

#	Article	IF	CITATIONS
73	The apparent establishment and subsequent eradication of the Australian giant bulldog ant <i>Myrmecia brevinoda</i> Forel (Hymenoptera: Formicidae) in New Zealand. New Zealand Journal of Zoology, 2005, 32, 353-357.	1.1	13
74	Relationships between mosquito densities in artificial container habitats, land use and temperature in the Kapitiâ€Horowhenua region, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2006, 40, 285-297.	2.0	13
75	Synergistic effects of temperature, diet and colony size on the competitive ability of two ant species. Austral Ecology, 2015, 40, 90-99.	1.5	13
76	A metatranscriptomic analysis of diseased social wasps (Vespula vulgaris) for pathogens, with an experimental infection of larvae and nests. PLoS ONE, 2018, 13, e0209589.	2.5	13
77	A global review of socioeconomic and environmental impacts of ants reveals new insights for risk assessment. Ecological Applications, 2022, 32, e2577.	3.8	13
78	Mosquito density, macroinvertebrate diversity, and water chemistry in waterâ€filled containers: Relationships to land use. New Zealand Journal of Zoology, 2007, 34, 203-218.	1.1	12
79	Recent behavioural and population genetic divergence of an invasive ant in a novel environment. Diversity and Distributions, 2012, 18, 323-333.	4.1	12
80	Carbohydrate scarcity increases foraging activities and aggressiveness in the ant <i><scp>P</scp>rolasius advenus</i> (<scp>H</scp> ymenoptera: <scp>F</scp> ormicidae). Ecological Entomology, 2014, 39, 684-692.	2.2	12
81	Lack of genetic structuring, low effective population sizes and major bottlenecks characterise common and German wasps in New Zealand. Biological Invasions, 2019, 21, 3185-3201.	2.4	12
82	Viral communities in the parasite Varroa destructor and in colonies of their honey bee host (Apis) Tj ETQq0 0 0 r	gBT /Qverl 3.3	ock 10 Tf 50
83	Postharvest disinfestation of diapausing and non-diapausing twospotted spider mite (Tetranychus) Tj ETQq1 1 C Applicata, 1997, 83, 189-193.).784314 ı 1.4	rgBT /Overloc 11
84	Effect of a Combined Methyl Bromide Fumigation and Cold Storage Treatment on Cydia pomonella (Lepidoptera: Tortricidae) Mortality on Apples. Journal of Economic Entomology, 1998, 91, 528-533.	1.8	11
85	The influence of aquatic predators on mosquito abundance in animal drinking troughs in New Zealand. Journal of Vector Ecology, 2010, 35, 347-353.	1.0	11
86	Temperature and starvation effects on food exploitation by Argentine ants and native ants in New Zealand. Journal of Applied Entomology, 2013, 137, 550-559.	1.8	11
87	Population decline but increased distribution of an invasive ant genotype on a Pacific atoll. Biological Invasions, 2013, 15, 599-612.	2.4	11
88	Fitness and microbial networks of the common wasp, <i>Vespula vulgaris</i> (Hymenoptera: Vespidae), in its native and introduced ranges. Ecological Entomology, 2019, 44, 512-523.	2.2	11
89	Disruption of Foraging by a Dominant Invasive Species to Decrease Its Competitive Ability. PLoS ONE, 2014, 9, e90173.	2.5	11
90	Container surface area and water depth influence the population dynamics of the mosquito Culex pervigilans (Diptera: Culicidae) and its associated predators in New Zealand. Journal of Vector Ecology, 2003, 28, 267-74.	1.0	11

#	Article	IF	CITATIONS
91	The role of resource dispersion in promoting the co-occurrence of dominant and subordinate ant species. Oikos, 2010, 119, 659-668.	2.7	10
92	Reduced Densities of the Invasive Wasp,Vespula vulgaris(Hymenoptera: Vespidae), did not Alter the Invertebrate Community Composition ofNothofagusForests in New Zealand. Environmental Entomology, 2013, 42, 223-230.	1.4	10
93	Density-dependent effects of an invasive wasp on the morphology of an endemic New Zealand ant. Biological Invasions, 2015, 17, 327-335.	2.4	10
94	Bioclimatic Modelling Identifies Suitable Habitat for the Establishment of the Invasive European Paper Wasp (Hymenoptera: Vespidae) across the Southern Hemisphere. Insects, 2020, 11, 784.	2.2	10
95	Invasive paper wasps have strong cascading effects on the host plant of monarch butterflies. Ecological Entomology, 2021, 46, 459-469.	2.2	10
96	A Diverse Viral Community from Predatory Wasps in Their Native and Invaded Range, with a New Virus Infectious to Honey Bees. Viruses, 2021, 13, 1431.	3.3	10
97	Abundance and Effects of Predators and Parasitoids on the Russian Wheat Aphid (Homoptera:) Tj ETQq1 1 0.784 360-368.	4314 rgBT 1.4	/Overlock 10 10
98	Gamma Irradiation for Mter Harvest Disinfestation of Diapausing Two spotted Spider Mite (Acari:) Tj ETQq0 0 0 r	gBT /Over 1.8	ock 10 Tf 50
99	Gamma irradiation for postharvest disinfestation of <i>Ctenopseustis obliquana</i> (Walker) (Lep.,) Tj ETQq1 1	0.784314 1.8	rgßT /Overlo
100	Genetic diversity is positively associated with fineâ€scale momentary abundance of an invasive ant. Ecology and Evolution, 2012, 2, 2091-2105.	1.9	9
101	Arrival sequence and diet mediate interspecific competition in an ant community. Insectes Sociaux, 2013, 60, 463-473.	1.2	9
102	Diploscapter formicidae sp. n. (Rhabditida: Diploscapteridae), from the ant Prolasius advenus (Hymenoptera: Formicidae) inANew Zealand. Nematology, 2013, 15, 109-123.	0.6	9
103	The stinging response of the common wasp (Vespula vulgaris): plasticity and variation in individual aggressiveness. Insectes Sociaux, 2015, 62, 455-463.	1.2	9
104	The association between mitochondrial genetic variation and reduced colony fitness in an invasive wasp. Molecular Ecology, 2019, 28, 3324-3338.	3.9	9
105	Viral and fungal pathogens associated with Pneumolaelaps niutirani (Acari: Laelapidae): a mite found in diseased nests of Vespula wasps. Insectes Sociaux, 2020, 67, 83-93.	1.2	9
106	Polistes versicolor (Hymenoptera: Vespidae), an Introduced Wasp in the Galapagos Islands: Its Life Cycle and Ecological Impact. Environmental Entomology, 2020, 49, 1480-1491.	1.4	9
107	Population genetics of the invasive wasp Vespula germanica in South Africa. Insectes Sociaux, 2020, 67, 229-238.	1.2	9
108	Native and introduced Argentine ant populations are characterised by distinct transcriptomic signatures associated with behaviour and immunity. NeoBiota, 0, 49, 105-126.	1.0	9

#	Article	IF	CITATIONS
109	The lethal effects of gamma irradiation on larvae of the Huhu beetle, Prionoplus reticularis: a potential quarantine treatment for New Zealand export pine trees. Entomologia Experimentalis Et Applicata, 2000, 94, 237-242.	1.4	8
110	Trophic interactions promote dominance by cyanobacteria <i>(Anabaena</i> spp.) in the pelagic zone of lower Karori reservoir, Wellington, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2007, 41, 143-155.	2.0	8
111	Does altering patch number and connectivity change the predatory functional response type? Experiments and simulations in an acarine predator–prey system. Canadian Journal of Zoology, 2005, 83, 797-806.	1.0	7
112	Foraging characteristics and intraspecific behaviour of the exotic species Monomorium sydneyense (Hymenoptera: Formicidae) in New Zealand, with implications for its management. New Zealand Journal of Zoology, 2007, 34, 25-34.	1.1	7
113	Influence of Toxic Bait Type and Starvation on Worker and Queen Mortality in Laboratory Colonies of Argentine Ant (Hymenoptera: Formicidae). Journal of Economic Entomology, 2012, 105, 1139-1144.	1.8	7
114	Foraging Relationships Between Elephants and <i>Lantana camara</i> Invasion in Mudumalai Tiger Reserve, India. Biotropica, 2014, 46, 194-201.	1.6	7
115	Toxicity and utilization of chemical weapons: does toxicity and venom utilization contribute to the formation of species communities?. Ecology and Evolution, 2015, 5, 3103-3113.	1.9	7
116	Validating spatiotemporal predictions of an important pest of small grains. Pest Management Science, 2015, 71, 131-138.	3.4	7
117	A genetic bottleneck in populations of a New Zealand endemic ant associated with density of an invasive predatory wasp. Insectes Sociaux, 2017, 64, 65-74.	1.2	7
118	A preliminary study of the usefulness of morphometric tools for splitting theMonomorium antarcticum(Smith) complex (Hymenoptera: Formicidae), New Zealand's most common native ants. New Zealand Entomologist, 2004, 27, 103-108.	0.3	6
119	Evaluation of two dipping methods for sampling immature <i>Culex</i> and <i>Ochlerotatus</i> mosquitoes (Diptera: Culicidae) from artificial containers. New Zealand Journal of Marine and Freshwater Research, 2005, 39, 1233-1241.	2.0	6
120	Integrated pest management: an under-utilized tool for conservation and the management of invasive ants and their mutualistic Hemiptera in the Pacific. Pacific Conservation Biology, 2008, 14, 246.	1.0	6
121	Behavioral plasticity mediates asymmetric competition between invasive wasps and native ants. Communicative and Integrative Biology, 2012, 5, 127-129.	1.4	6
122	Lethal and Sublethal Impacts of Predaceous BackswimmerAnisops wakefieldi(Hemiptera: Notonectidae) on the Life-History Traits of the New Zealand MosquitoCulex pervigilans(Diptera: Culicidae). Journal of Medical Entomology, 2013, 50, 1014-1024.	1.8	6
123	The association between invasive <i>Lantana camara</i> and seedlings/saplings of a plant community in Mudumalai Tiger Reserve, India. Journal of Tropical Ecology, 2014, 30, 551-563.	1.1	6
124	Indirect evidence of pathogen-associated altered oocyte production in queens of the invasive yellow crazy ant, <i>Anoplolepis gracilipes</i> , in Arnhem Land, Australia. Bulletin of Entomological Research, 2018, 108, 451-460.	1.0	6
125	Nesting Ecology and Colony Survival of Two Invasive <i>Polistes</i> Wasps (Hymenoptera: Vespidae) in New Zealand. Environmental Entomology, 2021, 50, 1466-1473.	1.4	6
126	Assessment of Amblyseius fallacis (Acari: Phytoseiidae) for biological control of tetranychid mites in an Ontario peach orchard. Experimental and Applied Acarology, 1999, 23, 995-1009.	1.6	5

#	Article	IF	CITATIONS
127	Using community engagement and biodiversity surveys to inform decisions to control invasive species: a case study of yellow crazy ants in Atafu, Tokelau. Pacific Conservation Biology, 2018, 24, 379.	1.0	5
128	Gut microbial communities and pathogens infection in New Zealand bumble bees (<i>Bombus) Tj ETQq0 0 0 rgBT</i>	/8verlock	10 Tf 50 70
129	The ant community response to the arrival ofMonomorium sydneyenseforel (Hymenoptera:) Tj ETQq1 1 0.784314	rgBT /Ov 1:1	erlock 10 Tf
130	Male production by workers in the polygynous ant Prolasius advenus. Insectes Sociaux, 2013, 60, 303-308.	1.2	4
131	Ambient temperature variation does not influence regional proportion of human male births in New Zealand. Journal of the Royal Society of New Zealand, 2013, 43, 67-74.	1.9	4
132	Aspects of resilience of polar sea ice algae to changes in their environment. Hydrobiologia, 2015, 761, 261-275.	2.0	4
133	A citizen science project reveals contrasting latitudinal gradients of wing deformity and parasite infection of monarch butterflies in <scp>New Zealand</scp> . Ecological Entomology, 2021, 46, 1128-1135.	2.2	4
134	The native and exotic prey community of two invasive paper wasps (Hymenoptera: Vespidae) in New Zealand as determined by DNA barcoding. Biological Invasions, 2022, 24, 1797-1808.	2.4	4
135	Comment on Moffett: "Supercolonies of billions in an invasive ant: What is a society?". Behavioral Ecology, 2012, 23, 935-937.	2.2	3
136	Fish distributions along depth gradients of a sea mountain range conform to the midâ€domain effect. Ecography, 2012, 35, 557-565.	4.5	3
137	Feeling the Heat? Substantial Variation in Temperatures Does Not Affect the Proportion of Males Born in Australia. Human Biology, 2013, 85, 757-767.	0.2	2
138	Confirmation of <i>Nosema ceranae</i> in New Zealand and a phylogenetic comparison of <i>Nosema</i> spp. strains. Journal of Apicultural Research, 2015, 54, 101-104.	1.5	2
139	Density-Dependent Effects of an Invasive Ant on a Ground-Dwelling Arthropod Community. Environmental Entomology, 2015, 44, 44-53.	1.4	2
140	Integrating biochemical and behavioral approaches to develop a bait to manage the invasive yellow paper wasp <i>Polistes versicolor</i> (Hymenoptera, Vespidae) in the Galápagos Islands. Neotropical Biodiversity, 2022, 8, 271-280.	0.5	2
141	The Long-Term Effects of Reduced Competitive Ability on Foraging Success of an Invasive Pest Species. Journal of Economic Entomology, 2016, 109, 1628-1635.	1.8	0
142	Gene drive and RNAi technologies: a bio-cultural review of next-generation tools for pest wasp management in New Zealand. Journal of the Royal Society of New Zealand, 0, , 1-18.	1.9	0