
Juan Manuel Ruiz SÃ;ez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3257436/publications.pdf Version: 2024-02-01

IIIAN MANUEL RUIZ SÃ:EZ

#	Article	IF	CITATIONS
1	Boron in Plant Biology. Plant Biology, 2002, 4, 205-223.	1.8	629
2	Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science, 2001, 160, 315-321.	1.7	560
3	Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 2010, 178, 30-40.	1.7	318
4	Oxidative Stress and Antioxidants in Tomato (Solanum lycopersicum) Plants Subjected to Boron Toxicity. Annals of Botany, 2007, 100, 747-756.	1.4	217
5	Salinity-induced glutathione synthesis in Brassica napus. Planta, 2002, 214, 965-969.	1.6	186
6	Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environmental and Experimental Botany, 2005, 54, 193-201.	2.0	156
7	Silicon-mediated Improvement in Plant Salinity Tolerance: The Role of Aquaporins. Frontiers in Plant Science, 2017, 8, 948.	1.7	132
8	Leaf-macronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. Scientia Horticulturae, 1997, 71, 227-234.	1.7	123
9	lodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Annals of Applied Biology, 2008, 152, 289-299.	1.3	120
10	Antioxidant content and ascorbate metabolism in cherry tomato exocarp in relation to temperature and solar radiation. Journal of the Science of Food and Agriculture, 2006, 86, 1545-1551.	1.7	113
11	Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Scientia Horticulturae, 2008, 116, 248-255.	1.7	111
12	Role of nitric oxide under saline stress: implications on proline metabolism. Biologia Plantarum, 2008, 52, 587-591.	1.9	110
13	Relationship between boron and phenolic metabolism in tobacco leaves. Phytochemistry, 1998, 48, 269-272.	1.4	103
14	Response of plant yield and leaf pigments to saline conditions: Effectiveness of different rootstocks in melon plants (<i>Cucumis melo</i> L.). Soil Science and Plant Nutrition, 1997, 43, 855-862.	0.8	101
15	The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 2011, 91, 152-162.	1.7	93
16	Production and detoxification of H ₂ O ₂ in lettuce plants exposed to selenium. Annals of Applied Biology, 2009, 154, 107-116.	1.3	91
17	Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress. Plant Science, 2012, 188-189, 89-96.	1.7	89
18	Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock. Phytochemistry, 2002, 59, 473-478.	1.4	88

#	Article	IF	CITATIONS
19	Accumulation of free polyamines enhances the antioxidant response in fruits of grafted tomato plants under water stress. Journal of Plant Physiology, 2016, 190, 72-78.	1.6	84
20	Phenolic profiles of cherry tomatoes as influenced by hydric stress and rootstock technique. Food Chemistry, 2012, 134, 775-782.	4.2	78
21	Does grafting provide tomato plants an advantage against H2 O2 production under conditions of thermal shock?. Physiologia Plantarum, 2003, 117, 44-50.	2.6	75
22	Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris) Tj ETQqO	0 0 rgBT /(1.6	Overlock 10 T 72
23	The Role of Fungicides in the Physiology of Higher Plants: Implications for Defense Responses. Botanical Review, The, 2003, 69, 162-172.	1.7	72
24	Role of GSH homeostasis under Zn toxicity in plants with different Zn tolerance. Plant Science, 2014, 227, 110-121.	1.7	67
25	Can grafting in tomato plants strengthen resistance to thermal stress?. Journal of the Science of Food and Agriculture, 2003, 83, 1315-1319.	1.7	65
26	Changes in biomass, enzymatic activity and protein concentration in roots and leaves of green bean plants (Phaseolus vulgaris L. cv. Strike) under high NH4NO3 application rates. Scientia Horticulturae, 2004, 99, 237-248.	1.7	65
27	Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 2011, 181, 195-202.	1.7	65
28	Response of phenolic metabolism to the application of carbendazim plus boron in tobacco. Physiologia Plantarum, 1999, 106, 151-157.	2.6	64
29	Study of the ionome and uptake fluxes in cherry tomato plants under moderate water stress conditions. Plant and Soil, 2010, 335, 339-347.	1.8	63
30	Oxidative metabolism in tomato plants subjected to heat stress. Journal of Horticultural Science and Biotechnology, 2004, 79, 560-564.	0.9	61
31	Response of nitrogen metabolism to boron toxicity in tomato plants. Plant Biology, 2009, 11, 671-677.	1.8	61
32	Ammonia production and assimilation: Its importance as a tolerance mechanism during moderate water deficit in tomato plants. Journal of Plant Physiology, 2011, 168, 816-823.	1.6	60
33	Nicotine-free and salt-tolerant tobacco plants obtained by grafting to salinity-resistant rootstocks of tomato. Physiologia Plantarum, 2005, 124, 465-475.	2.6	59
34	Effect of cytokinins on oxidative stress in tobacco plants under nitrogen deficiency. Environmental and Experimental Botany, 2011, 72, 167-173.	2.0	58
35	Nitrogen Metabolism in Tobacco Plants (Nicotiana tabacum L.): Role of Boron as a Possible Regulatory Factor. International Journal of Plant Sciences, 1998, 159, 121-126.	0.6	57
36	Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. Journal of the Science of Food and Agriculture, 2010, 90, 1914-1919.	1.7	57

Juan Manuel Ruiz SÃiez

#	Article	IF	CITATIONS
37	Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Science, 2009, 176, 545-552.	1.7	55
38	Relationship between potassium fertilisation and nitrate assimilation in leaves and fruits of cucumber (Cucumis sativus) plants. Annals of Applied Biology, 2002, 140, 241-245.	1.3	53
39	Parameters Symptomatic for Boron Toxicity in Leaves of Tomato Plants. Journal of Botany, 2012, 2012, 1-17.	1.2	52
40	Does Iodine Biofortification Affect Oxidative Metabolism in Lettuce Plants?. Biological Trace Element Research, 2011, 142, 831-842.	1.9	51
41	Influence of the proline metabolism and glycine betaine on tolerance to salt stress in tomato (Solanum lycopersicum L.) commercial genotypes. Journal of Plant Physiology, 2018, 231, 329-336.	1.6	51
42	Role of Ca2+ in the metabolism of phenolic compounds in tobacco leaves (Nicotiana tabacum L.). Plant Growth Regulation, 2003, 41, 173-177.	1.8	50
43	Boron Increases Synthesis of Glutathione in Sunflower Plants Subjected to Aluminum Stress. Plant and Soil, 2006, 279, 25-30.	1.8	47
44	lodine Effects on Phenolic Metabolism in Lettuce Plants under Salt Stress. Journal of Agricultural and Food Chemistry, 2013, 61, 2591-2596.	2.4	47
45	Importance of N Source on Heat Stress Tolerance Due to the Accumulation of Proline and Quaternary Ammonium Compounds in Tomato Plants. Plant Biology, 2004, 6, 702-707.	1.8	45
46	Sucrolytic activities in cherry tomato fruits in relation to temperature and solar radiation. Scientia Horticulturae, 2007, 113, 244-249.	1.7	45
47	Grafting under water stress in tomato cherry: improving the fruit yield and quality. Annals of Applied Biology, 2012, 161, 302-312.	1.3	45
48	Preliminary studies on the involvement of biosynthesis of cysteine and glutathione concentration in the resistance to B toxicity in sunflower plants. Plant Science, 2003, 165, 811-817.	1.7	44
49	Photorespiration Process and Nitrogen Metabolism in Lettuce Plants (Lactuca sativa L.): Induced Changes in Response to Iodine Biofortification. Journal of Plant Growth Regulation, 2010, 29, 477-486.	2.8	44
50	Nitrogen Metabolism in Pepper Plants Applied with Different Bioregulators. Journal of Agricultural and Food Chemistry, 2000, 48, 2925-2929.	2.4	43
51	BORON EFFECT ON MINERAL NUTRIENTS OF TOBACCO. Journal of Plant Nutrition, 2002, 25, 509-522.	0.9	42
52	Role of CaCl2 in nitrate assimilation in leaves and roots of tobacco plants (Nicotiana tabacum L.). Plant Science, 1999, 141, 107-115.	1.7	39
53	Effect of calcium on mineral nutrient uptake and growth of tobacco. Journal of the Science of Food and Agriculture, 2001, 81, 1334-1338.	1.7	39
54	Sulphur Phytoaccumulation in Plant Species Characteristic of Gypsiferous Soils. International Journal of Phytoremediation, 2003, 5, 203-210.	1.7	38

#	Article	IF	CITATIONS
55	Comparative effect of Al, Se, and Mo toxicity on NO3â^' assimilation in sunflower (Helianthus annuus) Tj ETQq1	1 0,78431 3.8	4 rgBT /Over
56	Genotype differences in the metabolism of proline and polyamines under moderate drought in tomato plants. Plant Biology, 2014, 16, 1050-1057.	1.8	37
57	Zinc biofortification improves phytochemicals and amino-acidic profile in Brassica oleracea cv. Bronco. Plant Science, 2017, 258, 45-51.	1.7	36
58	Nitrogen-Use Efficiency in Relation to Different Forms and Application Rates of Se in Lettuce Plants. Journal of Plant Growth Regulation, 2010, 29, 164-170.	2.8	34
59	Foliar level of phosphorus and its bioindicators in Cucumis melo grafted plants. A possible effect of rootstocks. Journal of Plant Physiology, 1996, 149, 400-404.	1.6	33
60	Proline metabolism in response to nitrogen toxicity in fruit of French Bean plants (Phaseolus) Tj ETQq0 0 0 rgBT	Overlock I	10 ₃₃ 50 542
61	How does grafting affect the ionome of cherry tomato plants under water stress?. Soil Science and Plant Nutrition, 2014, 60, 145-155.	0.8	33
62	Comparative study of the toxic effect of Zn in Lactuca sativa and Brassica oleracea plants: I. Growth, distribution, and accumulation of Zn, and metabolism of carboxylates. Environmental and Experimental Botany, 2014, 107, 98-104.	2.0	33
63	Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency. Phytochemistry, 2016, 130, 85-89.	1.4	33
64	Nitrogen Metabolism and Yield Response to Increases in Nitrogenâ^'Phosphorus Fertilization:Â Improvement in Greenhouse Cultivation of Eggplant (Solanum melongenaCv. Bonica). Journal of Agricultural and Food Chemistry, 1997, 45, 4227-4231.	2.4	32
65	Regulation of sulphur assimilation in lettuce plants in the presence of selenium. Plant Growth Regulation, 2008, 56, 43-51.	1.8	32
66	Study of phytohormone profile and oxidative metabolism as key process to identification of salinity response in tomato commercial genotypes. Journal of Plant Physiology, 2017, 216, 164-173.	1.6	32
67	Is phenol oxidation responsible for the short-term effects of boron deficiency on plasma-membrane permeability and function in squash roots?. Plant Physiology and Biochemistry, 2002, 40, 853-858.	2.8	31
68	Response of carbon and nitrogen-rich metabolites to nitrogen deficiency in PSARKâ^·IPT tobacco plants. Plant Physiology and Biochemistry, 2012, 57, 231-237.	2.8	29
69	Role of Grafting in Resistance to Water Stress in Tomato Plants: Ammonia Production and Assimilation. Journal of Plant Growth Regulation, 2013, 32, 831-842.	2.8	29
70	STUDY OF THE INTERACTIONS BETWEEN IODINE AND MINERAL NUTRIENTS IN LETTUCE PLANTS. Journal of Plant Nutrition, 2012, 35, 1958-1969.	0.9	28
71	Possible role of HMA4a TILLING mutants of Brassica rapa in cadmium phytoremediation programs. Ecotoxicology and Environmental Safety, 2019, 180, 88-94.	2.9	28
72	Direct Action of the Biocide Carbendazim on Phenolic Metabolism in Tobacco Plants. Journal of Agricultural and Food Chemistry, 2001, 49, 131-137.	2.4	27

#	Article	IF	CITATIONS
73	NUTRITIONAL BALANCE CHANGES IN LETTUCE PLANT GROWN UNDER DIFFERENT DOSES AND FORMS OF SELENIUM. Journal of Plant Nutrition, 2013, 36, 1344-1354.	0.9	27
74	Response of oxidative metabolism in watermelon plants subjected to cold stress. Functional Plant Biology, 2002, 29, 643.	1.1	27
75	Grafting to improve nitrogen-use efficiency traits in tobacco plants. Journal of the Science of Food and Agriculture, 2006, 86, 1014-1021.	1.7	26
76	Photosynthesis and metabolism of sugars from lettuce plants (Lactuca sativa L. var. longifolia) subjected to biofortification with iodine. Plant Growth Regulation, 2011, 65, 137-143.	1.8	25
77	Effects of climatic control on tomato yield and nutritional quality in Mediterranean screenhouse. Journal of the Science of Food and Agriculture, 2014, 94, 63-70.	1.7	25
78	Cytokinin-Dependent Improvement in Transgenic P _{SARK} ::IPT Tobacco under Nitrogen Deficiency. Journal of Agricultural and Food Chemistry, 2011, 59, 10491-10495.	2.4	24
79	Is the Application of Carbendazim Harmful to Healthy Plants? Evidence of Weak Phytotoxicity in Tobacco. Journal of Agricultural and Food Chemistry, 2002, 50, 279-283.	2.4	22
80	Title is missing!. Plant Growth Regulation, 2002, 36, 261-265.	1.8	22
81	Grafting between tobacco plants to enhance salinity tolerance. Journal of Plant Physiology, 2006, 163, 1229-1237.	1.6	21
82	Environmental conditions in relation to stress in cherry tomato fruits in two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 2009, 89, 735-742.	1.7	21
83	Ammonium formation and assimilation in PSARKâ^IPT tobacco transgenic plants under low N. Journal of Plant Physiology, 2012, 169, 157-162.	1.6	21
84	Roles of some nitrogenous compounds protectors in the resistance to zinc toxicity in Lactuca sativa cv. Phillipus and Brassica oleracea cv. Bronco. Acta Physiologiae Plantarum, 2015, 37, 1.	1.0	21
85	Comparative study of Zn deficiency in L. sativa and B. oleracea plants: NH4+ assimilation and nitrogen derived protective compounds. Plant Science, 2016, 248, 8-16.	1.7	21
86	Growth conditions, elemental accumulation and induced physiological changes in Chinese cabbage. Chemosphere, 2003, 52, 1031-1040.	4.2	19
87	Zn-biofortification enhanced nitrogen metabolism and photorespiration process in green leafy vegetable <i>Lactuca sativa</i> L. Journal of the Science of Food and Agriculture, 2017, 97, 1828-1836.	1.7	18
88	Hydrogen sulphide increase the tolerance to alkalinity stress in cabbage plants (Brassica oleracea L.) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf

89	Effects of asparagus decline on nutrients and phenolic compounds, spear quality, and allelopathy. Scientia Horticulturae, 2020, 261, 109029.	1.7	18
90	Influence of temperature on biomass, iron metabolism and some related bioindicators in tomato and watermelon plants. Journal of Plant Physiology, 2003, 160, 1065-1071.	1.6	17

Juan Manuel Ruiz SÃiez

#	Article	IF	CITATIONS
91	Biofortification with potassium: antioxidant responses during postharvest of cherry tomato fruits in cold storage. Acta Physiologiae Plantarum, 2014, 36, 283-293.	1.0	17
92	Proline metabolism in cherry tomato exocarp in relation to temperature and solar radiation. Journal of Horticultural Science and Biotechnology, 2007, 82, 739-744.	0.9	14
93	Variation in the use efficiency of N under moderate water deficit in tomato plants (Solanum) Tj ETQq1 1 0.7843	14 rgBT /C 1.0	Overlock 10 Tf
94	Study of Zn accumulation and tolerance of HMA4 TILLING mutants of Brassica rapa grown under Zn deficiency and Zn toxicity. Plant Science, 2019, 287, 110201.	1.7	14
95	Calcium impact on phosphorus and its main bioindicators: Response in the roots and leaves of tobacco. Journal of Plant Nutrition, 1998, 21, 2273-2285.	0.9	13
96	Efficiency of the different genotypes of tomato in relation to foliar content of Fe and the response of some bioindicators. Journal of Plant Nutrition, 2000, 23, 1777-1786.	0.9	13
97	Environmental conditions affect pectin solubilization in cherry tomato fruits grown in two experimental Mediterranean greenhouses. Environmental and Experimental Botany, 2009, 67, 320-327.	2.0	13
98	Proline, Betaine, and Choline Responses to Different Phosphorus Levels in Green Bean. Communications in Soil Science and Plant Analysis, 2013, 44, 465-472.	0.6	13
99	Tolerance to cadmium toxicity and phytoremediation potential of three Brassica rapa CAX1a TILLING mutants. Ecotoxicology and Environmental Safety, 2020, 189, 109961.	2.9	13
100	Study of salt-stress tolerance and defensive mechanisms in Brassica rapa CAX1a TILLING mutants. Environmental and Experimental Botany, 2020, 175, 104061.	2.0	13
101	The application of the silicon-based biostimulant Codasil® offset water deficit of lettuce plants. Scientia Horticulturae, 2021, 285, 110177.	1.7	13
102	Metabolism and efficiency in nitrogen utilization during senescence in pepper plants: Response to nitrogenous fertilization. Journal of Plant Nutrition, 2000, 23, 91-101.	0.9	12
103	Pyruvate Kinase Activity as an Indicator of the Level of K+, Mg2+, and Ca2+in Leaves and Fruits of the Cucumber:Â The Role of Potassium Fertilization. Journal of Agricultural and Food Chemistry, 1999, 47, 845-849.	2.4	11
104	Comparative study of the toxic effect of salinity in different genotypes of tomato plants: Carboxylates metabolism. Scientia Horticulturae, 2017, 217, 173-178.	1.7	11
105	Physiological profile of CAX1a TILLING mutants of Brassica rapa exposed to different calcium doses. Plant Science, 2018, 272, 164-172.	1.7	11
106	Effect of <scp>l</scp> â€amino acidâ€based biostimulants on nitrogen use efficiency (<scp>NUE</scp>) in lettuce plants. Journal of the Science of Food and Agriculture, 2022, 102, 7098-7106.	1.7	11
107	Phosphorus Metabolism and Yield Response to Increases in Nitrogenâ^'Phosphorus Fertilization:Â Improvement in Greenhouse Cultivation of Eggplant (Solanum melongenaCv. Bonica). Journal of Agricultural and Food Chemistry, 1998, 46, 1603-1608.	2.4	10
108	METABOLISM AND EFFICIENCY OF PHOSPHORUS UTILIZATION DURING SENESCENCE IN PEPPER PLANTS: RESPONSE TO NITROGENOUS AND POTASSIUM FERTILIZATION. Journal of Plant Nutrition, 2001, 24, 1731-1743.	0.9	10

#	Article	IF	CITATIONS
109	Implication of potassium on the quality of cherry tomato fruits after postharvest during cold storage. International Journal of Food Sciences and Nutrition, 2014, 65, 203-211.	1.3	10
110	Nitrogen metabolism and yield response of cucumber (Cucumis sativus L cv Brunex) plants to phosphorus fertilisation. Journal of the Science of Food and Agriculture, 2000, 80, 2069-2073.	1.7	9
111	Oxidative Stress in Relation With Micronutrient Deficiency or Toxicity. , 2018, , 181-194.		9
112	Assaying the use of sodium thiosulphate as a biostimulant and its effect on cadmium accumulation and tolerance in Brassica oleracea plants. Ecotoxicology and Environmental Safety, 2020, 200, 110760.	2.9	9
113	Influence of nitrogen, phosphorus, and potassium on pigment concentration in cucumber leaves. Communications in Soil Science and Plant Analysis, 1996, 27, 1001-1012.	0.6	8
114	Floating row covers affect Pb and Cd accumulation and antioxidant status in Chinese cabbage. Scientia Horticulturae, 2001, 89, 85-92.	1.7	8
115	Preliminary studies on the influence of boron on the foliar biomass and quality of tobacco leaves subjected to fertilisation. Journal of the Science of Food and Agriculture, 2001, 81, 739-744.	1.7	8
116	Regulation of Nitrogen Assimilation by Sulfur in Bean. Journal of Plant Nutrition, 2005, 28, 1163-1174.	0.9	8
117	Physiological and Nutritional Evaluation of the Application of Phosphite as a Phosphorus Source in Cucumber Plants. Communications in Soil Science and Plant Analysis, 2014, 45, 204-222.	0.6	8
118	PSARK::IPT expression causes protection of photosynthesis in tobacco plants during N deficiency. Environmental and Experimental Botany, 2014, 98, 40-46.	2.0	8
119	Effect of Soil Temperature on K and Ca Concentrations and on ATPase and Pyruvate Kinase Activity in Potato Roots. Hortscience: A Publication of the American Society for Hortcultural Science, 2002, 37, 325-328.	0.5	8
120	Yield and biosynthesis of nitrogenous compounds in fruits of green bean(Phaseolus vulgaris L cv) Tj ETQq0 0 0 r 84, 575-580.	rgBT /Over 1.7	lock 10 Tf 50 7
121	lodine application affects nitrogen-use efficiency of lettuce plants (Lactuca sativaL.). Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2011, 61, 378-383.	0.3	7
122	Analysis of metabolic and nutritional biomarkers in <i>Brassica oleracea</i> L. cv. Bronco plants under alkaline stress. Journal of Horticultural Science and Biotechnology, 2018, 93, 279-288.	0.9	7
123	Nitrogen and photorespiration pathways, salt stress genotypic tolerance effects in tomato plants (Solanum lycopersicum L.). Acta Physiologiae Plantarum, 2020, 42, 1.	1.0	7
124	A Fogging System Improves Antioxidative Defense Responses and Productivity in Tomato. Journal of the American Society for Horticultural Science, 2013, 138, 267-276.	0.5	7
125	Effects of nitrogen, phosphrous and potassium treatments on phosphorus fractions in melon plants. Communications in Soil Science and Plant Analysis, 1996, 27, 1417-1425.	0.6	6
126	Title is missing!. Plant Growth Regulation, 2002, 36, 231-236.	1.8	6

#	Article	IF	CITATIONS
127	Iron Metabolism in Tomato and Watermelon Plants: Influence of Nitrogen Source. Journal of Plant Nutrition, 2003, 26, 2413-2424.	0.9	6
128	Phosphorus Levels Influence Plasma Membrane H ⁺ -ATPase Activity and K ⁺ , Ca ²⁺ , and Mg ²⁺ Assimilation in Green Bean. Communications in Soil Science and Plant Analysis, 2013, 44, 456-464.	0.6	6
129	Effect of CAX1a TILLING mutations and calcium concentration on some primary metabolism processes in Brassica rapa plants. Journal of Plant Physiology, 2019, 237, 51-60.	1.6	6
130	Response of oxidative metabolism to the application of carbendazim plus boron in tobacco. Functional Plant Biology, 2001, 28, 801.	1.1	6
131	¿Son los pigmentos fotosintéticos buenos indicadores de la relación del nitrógeno, fósforo y potasio en frijol ejotero?. Ecosistemas Y Recursos Agropecuarios, 2018, 5, 387.	0.0	6
132	Calcium silicate ameliorates zinc deficiency and toxicity symptoms in barley plants through improvements in nitrogen metabolism and photosynthesis. Acta Physiologiae Plantarum, 2021, 43, 1.	1.0	6
133	Improvement of the physiological response of barley plants to both Zinc deficiency and toxicity by the application of calcium silicate. Plant Science, 2022, 319, 111259.	1.7	6
134	Influence of CaCl2on the Foliar Biomass and Quality of Tobacco Leaves. Journal of Agricultural and Food Chemistry, 2001, 49, 3600-3605.	2.4	4
135	The response of proline metabolism to nitrogen deficiency in pods and seeds of French bean (Phaseolus vulgarisL cv Strike) plants. Journal of the Science of Food and Agriculture, 2001, 81, 1471-1475.	1.7	4
136	Effect of bioregulators on the concentration of carbohydrates in pepper fruits. Communications in Soil Science and Plant Analysis, 1996, 27, 1013-1025.	0.6	3
137	CAX1a TILLING Mutations Modify the Hormonal Balance Controlling Growth and Ion Homeostasis in Brassica rapa Plants Subjected to Salinity. Agronomy, 2020, 10, 1699.	1.3	3
138	Evaluation of Physiological and Quality Parameters of Green Asparagus Spears Subjected to Three Treatments against the Decline Syndrome. Agronomy, 2021, 11, 937.	1.3	3
139	Influence of nitrogen, phosphorus, and potassium on pigments concentrations in cucumber leaves. Communications in Soil Science and Plant Analysis, 1996, 27, 1513-1526.	0.6	2
140	Renewed debate over transpiration and long-distance transport of minerals in plants. Trends in Plant Science, 2002, 7, 56.	4.3	2
141	Relationship between leaf micronutrient concentrations and fruit yield in new tomato cultivars. Journal of Horticultural Science and Biotechnology, 2005, 80, 476-480.	0.9	2
142	Response of carboxylate metabolism to zinc deficiency inLactuca sativaandBrassica oleraceaplants. Journal of Plant Nutrition and Soil Science, 2016, 179, 758-764.	1.1	2
143	Root-zone temperature affects the phytoextraction of iron in contaminated soil. Journal of Plant Nutrition, 2016, 39, 51-58.	0.9	2
144	NaSH: Phytotoxin or biostimulant in N assimilation in Brassica oleracea L. â€~Bronco' plants?. Scientia Horticulturae, 2019, 249, 471-477.	1.7	1

#	Article	IF	CITATIONS
145	NITROGEN–PHOSPHORUS–POTASSIUM EFFECTS ON FORMS OF SULFUR IN LEAVES AND FRUITS OF CUCUMBER. Journal of Plant Nutrition, 2002, 25, 2151-2159.	0.9	0