
Kiyosei Takasu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3256829/publications.pdf Version: 2024-02-01

KIVOSEI TAKASII

#	Article	IF	CITATIONS
1	Nonenzymatic Kinetic Resolution of Racemic Alcohols through an "Induced Fit―Process. Journal of the American Chemical Society, 1997, 119, 3169-3170.	13.7	278
2	Autoâ€Tandem Catalysis: A Single Catalyst Activating Mechanistically Distinct Reactions in a Single Reactor. Chemistry - A European Journal, 2009, 15, 12168-12179.	3.3	250
3	A Practical Catalytic Method for Preparing Highly Substituted Cyclobutanes and Cyclobutenes. Journal of the American Chemical Society, 2005, 127, 3668-3669.	13.7	146
4	Enhanced Rate and Selectivity by Carboxylate Salt as a Basic Cocatalyst in Chiral N-Heterocyclic Carbene-Catalyzed Asymmetric Acylation of Secondary Alcohols. Journal of the American Chemical Society, 2013, 135, 11485-11488.	13.7	121
5	Auto-Tandem Catalysis in the Synthesis of Substituted Quinolines from Aldimines and Electron-Rich Olefins: Cascade Povarovâ `Hydrogen-Transfer Reaction. Journal of Organic Chemistry, 2008, 73, 7451-7456.	3.2	118
6	Gold(I)-Catalyzed Polycyclizations of Polyenyne-Type Anilines Based on Hydroamination and Consecutive Hydroarylation Cascade. Journal of Organic Chemistry, 2011, 76, 9068-9080.	3.2	95
7	Rhodacyanine Dyes as Antimalarials. 1. Preliminary Evaluation of Their Activity and Toxicity. Journal of Medicinal Chemistry, 2002, 45, 995-998.	6.4	91
8	Catalytic (2 + 2)-Cycloaddition Reactions of Silyl Enol Ethers. A Convenient and Stereoselective Method for Cyclobutane Ring Formation. Journal of Organic Chemistry, 2004, 69, 517-521.	3.2	82
9	Thiourea-catalyzed asymmetric formal [3+2] cycloaddition of azomethine ylides with nitroolefins. Tetrahedron Letters, 2008, 49, 6910-6913.	1.4	79
10	Helical Nanographenes Embedded with Contiguous Azulene Units. Journal of the American Chemical Society, 2020, 142, 13322-13327.	13.7	78
11	Rapid Assembly of Polycyclic Substances by a Multicomponent Cascade (4 + 2)â^ (2 + 2) Cycloadditions:Â Total Synthesis of the Proposed Structure of Paesslerin A. Journal of the American Chemical Society, 2004, 126, 1352-1353.	13.7	75
12	Hydroxyl Group-Directed Organocatalytic Asymmetric Michael Addition of α,β-Unsaturated Ketones with Alkenylboronic Acids. Organic Letters, 2009, 11, 2425-2428.	4.6	68
13	Kinetic Resolution of Secondary Alcohols Catalyzed by Chiral Phosphoric Acids. Angewandte Chemie - International Edition, 2013, 52, 10227-10230.	13.8	60
14	Catalytic imino Diels–Alder reaction by triflic imide and its application to one-pot synthesis from three components. Tetrahedron, 2006, 62, 11900-11907.	1.9	54
15	Catalyst-Controlled Torquoselectivity Switch in the 4Ï€ Ring-Opening Reaction of 2-Amino-2-azetines Giving Î2-Substituted α,Î2-Unsaturated Amidines. Journal of the American Chemical Society, 2011, 133, 8470-8473.	13.7	54
16	Convenient Synthesis of Substituted Piperidinones from α,β-Unsaturated Amides: Formal Synthesis of Deplancheine, Tacamonine, and Paroxetine. Journal of Organic Chemistry, 2005, 70, 3957-3962.	3.2	51
17	Synthesis of three classes of rhodacyanine dyes and evaluation of their in vitro and in vivo antimalarial activity. Bioorganic and Medicinal Chemistry, 2006, 14, 8550-8563.	3.0	50
18	Development of a BrÃ,nsted Acid-Promoted Arene–Ynamide Cyclization toward the Total Syntheses of Marinoquinolines A and C and Aplidiopsamine A. Journal of Organic Chemistry, 2015, 80, 957-964.	3.2	49

#	Article	IF	CITATIONS
19	Construction of Highly-Functionalized Cyclopentanes from Silyl Enol Ethers and Activated Cyclopropanes by [3+2] Cycloaddition Catalyzed by Triflic Imide. Advanced Synthesis and Catalysis, 2006, 348, 2376-2380.	4.3	48
20	Prediction and Interpretable Visualization of Retrosynthetic Reactions Using Graph Convolutional Networks. Journal of Chemical Information and Modeling, 2019, 59, 5026-5033.	5.4	48
21	Thieme Chemistry Journal Awardees - Where Are They Now? Triflic Imide Catalyzed Cycloaddition Reactions. Synlett, 2009, 2009, 1905-1914.	1.8	47
22	Chiral sulfur-containing 1,2-disubstituted ferrocenes. Tetrahedron, 1998, 54, 7301-7334.	1.9	44
23	Total Synthesis of (â~)â€Histrionicotoxin through a Stereoselective Radical Translocation–Cyclization Reaction. Angewandte Chemie - International Edition, 2017, 56, 1087-1091.	13.8	44
24	π-Delocalized β-carbolinium cations as potential antimalarials. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1689-1692.	2.2	42
25	Synthesis and Evaluation of β-Carbolinium Cations as New Antimalarial Agents Based on π-Delocalized Lipophilic Cation (DLC) Hypothesis. Chemical and Pharmaceutical Bulletin, 2005, 53, 653-661.	1.3	42
26	Atropisomerism of α,Ĵ²â€Unsaturated Amidines: Stereoselective Synthesis by Catalytic Cascade Reaction and Optical Resolution. Chemistry - A European Journal, 2009, 15, 7026-7030.	3.3	42
27	New Stereoselective Entry to Azaspirocyclic Nucleus of Halichlorine and Pinnaic Acids by Radical Translocation/Cyclization Reaction. Organic Letters, 2003, 5, 3017-3020.	4.6	41
28	Cyclobutane ring formation by triflic imide catalyzed [2+2]-cycloaddition of allylsilanes. Tetrahedron Letters, 2006, 47, 6053-6056.	1.4	39
29	Cascade and one-pot processes providing substituted quinolines from aldimines and allylsilanes: auto-tandem catalysis of triflic imide. Tetrahedron Letters, 2007, 48, 4749-4753.	1.4	39
30	Use of a Catalytic Chiral Leaving Group for Asymmetric Substitutions at sp ³ â€Hybridized Carbon Atoms: Kinetic Resolution of βâ€Amino Alcohols by <i>p</i> â€Methoxybenzylation. Angewandte Chemie - International Edition, 2016, 55, 13137-13141.	13.8	38
31	An Arylative Ring Expansion Cascade of Fused Cyclobutenes via Short-Lived Intermediates with Planar Chirality. Journal of the American Chemical Society, 2015, 137, 9579-9582.	13.7	36
32	Total Synthesis of (±)-Culmorin and (±)-Longiborneol: An Efficient Construction of Tricyclo[6.3.0.03,9]undecan-10-one by Intramolecular Double Michael Addition. Journal of Organic Chemistry, 2000, 65, 4112-4119.	3.2	35
33	Facile and Stereoselective Access to Nonracemic Tricyclic Cyclobutanes by Asymmetric Intramolecular Michaelâ^'Aldol Reaction:Â Thermodynamic Equilibrium and Activation by Iodonium Ion. Journal of Organic Chemistry, 2001, 66, 4667-4672.	3.2	34
34	Synthesis and Antimalarial Efficacy of Aza-Fused Rhodacyanines in Vitro and in theP. bergheiMouse Model. Journal of Medicinal Chemistry, 2006, 49, 4795-4798.	6.4	32
35	Organocatalytic Activation of the Leaving Group in the Intramolecular Asymmetric S _N 2′ Reaction. Angewandte Chemie - International Edition, 2015, 54, 8263-8266.	13.8	31
36	Facile Construction of the Tricyclo[5.2.1.01,5]decane Ring System by Intramolecular Double Michael Reaction: Highly Stereocontrolled Total Synthesis of (±)-8,14-Cedranediol and (±)-8,14-Cedranoxide. Journal of Organic Chemistry, 1999, 64, 1259-1264.	3.2	29

#	Article	IF	CITATIONS
37	Parallel Synthesis of Antimalarial Rhodacyanine Dyes by the Combination of Three Components in One Pot. ACS Combinatorial Science, 2003, 5, 211-214.	3.3	29
38	An auxiliary induced asymmetric synthesis of functionalized cyclobutanes by means of catalytic (2+2)-cycloaddition reaction. Tetrahedron, 2004, 60, 2071-2078.	1.9	29
39	Novel Intramolecular [4 + 1] and [4 + 2] Annulation Reactions Employing Cascade Radical Cyclizations. Journal of Organic Chemistry, 2002, 67, 6001-6007.	3.2	27
40	Total Synthesis of (â^')â€Kopsinine by an Asymmetric Oneâ€Pot [N+2+3] Cyclization. Chemistry - an Asian Journal, 2012, 7, 2196-2198.	3.3	27
41	Stereocontrolled Total Synthesis of (±)-Culmorin via the Intramolecular Double Michael Addition. Organic Letters, 1999, 1, 391-394.	4.6	26
42	Roomâ€Temperature, Acidâ€Catalyzed [2+2] Cycloadditions: Suppression of Side Reactions by using a Flow Microreactor System. ChemSusChem, 2012, 5, 270-273.	6.8	26
43	Kinetic Resolution of Secondary Alcohols Catalyzed by Chiral Phosphoric Acids. Angewandte Chemie, 2013, 125, 10417-10420.	2.0	26
44	Catalytic Asymmetric Synthesis of Both Enantiomers of 4‑Substituted 1,4-Dihydropyridines with the Use of Bifunctional Thiourea-Ammonium Salts Bearing Different Counterions. Molecules, 2010, 15, 8305-8326.	3.8	25
45	Radical Aminomethylation of Imines. Journal of Organic Chemistry, 2014, 79, 8128-8133.	3.2	25
46	Auxiliary induced asymmetric Michael-aldol reaction under kinetic and thermodynamic conditions. Tetrahedron Letters, 2000, 41, 2145-2148.	1.4	24
47	Asymmetric Formal Synthesis of (+)-Catharanthine via Desymmetrization of Isoquinuclidine. Organic Letters, 2019, 21, 3750-3754.	4.6	24
48	Synthesis and Antimalarial Property of Orally Active Phenoxazinium Salts. Journal of Medicinal Chemistry, 2007, 50, 2281-2284.	6.4	22
49	Synthesis of trifunctional thioureas bearing 1,5-disubstituted triazole tether by Ru-catalyzed Huisgen cycloaddition. Tetrahedron Letters, 2010, 51, 2737-2740.	1.4	22
50	Synthesis of medium-sized cyclic γ-haloketones by radical mediated ring-opening reaction of Lewis acid catalyzed (2+2)-cycloaddition products. Tetrahedron Letters, 2005, 46, 1005-1008.	1.4	21
51	Fluorinated Rhodacyanine (SJL-01) Possessing High Efficacy for Visceral Leishmaniasis (VL). Journal of Medicinal Chemistry, 2010, 53, 368-373.	6.4	21
52	Synthesis of π-Extended Fluoranthenes via a KHMDS-Promoted Anionic-Radical Reaction Cascade. Organic Letters, 2017, 19, 3327-3330.	4.6	21
53	6-endo,6-endo,6-exo Cascade cyclization starting from vinyl radical; construction of a dodecahydrophenanthrene system. Tetrahedron Letters, 1999, 40, 6277-6280.	1.4	20
54	A direct entry to substituted piperidinones from α,β-unsaturated amides by means of aza double Michael reaction. Tetrahedron Letters, 2003, 44, 7429-7432.	1.4	20

#	Article	IF	CITATIONS
55	Nâ€Heterocyclic Carbeneâ€Catalyzed Benzoin Strategy for Divergent Synthesis of Cyclitol Derivatives from Alditols. Advanced Synthesis and Catalysis, 2015, 357, 131-147.	4.3	20
56	Desymmetrization of acid anhydride with asymmetric esterification catalyzed by chiral phosphoric acid. Tetrahedron Letters, 2016, 57, 4098-4100.	1.4	20
57	Rapid Assembly of Protoilludane Skeleton through Tandem Catalysis: Total Synthesis of Paesslerin A and Its Structural Revision. Organic Letters, 2019, 21, 3954-3958.	4.6	20
58	Facile and selective formation of a linear-triquinane skeleton by a rationally designed round trip radical reaction. Tetrahedron Letters, 2001, 42, 2157-2160.	1.4	19
59	(2+2) Cycloaddition Reaction of Alkyl Enol Ethers with Acrylates by in Situ Generated Silyl Triflic Imide Catalyst. Chemical and Pharmaceutical Bulletin, 2008, 56, 1205-1206.	1.3	19
60	CompRet: a comprehensive recommendation framework for chemical synthesis planning with algorithmic enumeration. Journal of Cheminformatics, 2020, 12, 52.	6.1	19
61	Enantioselective Total Synthesis of (â^')- and (+)-Petrosin. Organic Letters, 2010, 12, 5196-5199.	4.6	18
62	Palladium-Catalyzed Hydroamidation Reaction of Enones. Synlett, 2004, 2004, 1844-1846.	1.8	17
63	General Entry to Asymmetric One-Pot [N+ 2 +n] Cyclization for the Synthesis of Three- to Seven-Membered Azacycloalkanes. Journal of Organic Chemistry, 2012, 77, 7212-7222.	3.2	17
64	Total Synthesis of (+)-trans-Dihydronarciclasine Utilizing Asymmetric Conjugate Addition. Organic Letters, 2012, 14, 5868-5871.	4.6	17
65	Stereocontrolled Synthesis of Spiro[<i>n</i> .2]alkenes by Ring Contraction of Fusedâ€Cyclobutanols. Chemistry - A European Journal, 2010, 16, 8427-8432.	3.3	16
66	Synthesis of Functionalized Polycyclic Aromatic Compounds via a Formal [2 + 2]-Cycloaddition. Organic Letters, 2014, 16, 1008-1011.	4.6	16
67	Site-selective benzoin-type cyclization of unsymmetrical dialdoses catalyzed by N-heterocyclic carbenes for divergent cyclitol synthesis. Chemical Communications, 2017, 53, 4469-4472.	4.1	16
68	Catalytic multicomponent cycloaddition assembling three different substances to form highly substituted bicyclo[4.2.0]octanes. Tetrahedron Letters, 2008, 49, 4220-4222.	1.4	15
69	Formal (3+3) Cycloaddition of Silyl Enol Ethers Catalyzed by Trifric Imide: Domino Michael Addition-Claisen Condensation Accompanied with Isomerization of Silyl Enol Ethers. Chemical and Pharmaceutical Bulletin, 2011, 59, 1190-1193.	1.3	15
70	Use of a Catalytic Chiral Leaving Group for Asymmetric Substitutions at sp ³ â€Hybridized Carbon Atoms: Kinetic Resolution of βâ€Amino Alcohols by <i>p</i> â€Methoxybenzylation. Angewandte Chemie, 2016, 128, 13331-13335.	2.0	15
71	Al-Driven Synthetic Route Design Incorporated with Retrosynthesis Knowledge. Journal of Chemical Information and Modeling, 2022, 62, 1357-1367.	5.4	15
72	Chiral recognition of amino acid derivatives by 1,1′-binaphthalene-8,8′-diol. Tetrahedron Letters, 1996, 37, 4153-4156.	1.4	14

#	Article	IF	CITATIONS
73	Chiral amine–silyl triflate complex mediated asymmetric intramolecular Michael–aldol reaction via a novel enantioselective enol silylation process. Chemical Communications, 2000, , 1739-1740.	4.1	14
74	Auto-tandem catalysis: facile synthesis of substituted alkylidenecyclohexanones by domino (4+2) cycloaddition–elimination reaction. Chemical Communications, 2010, 46, 8246.	4.1	14
75	Critical profiles of chiral diether-mediated asymmetric conjugate aminolithiation of enoate with lithium amide as a key to the total synthesis of (â^')-kopsinine. Tetrahedron, 2013, 69, 3264-3273.	1.9	14
76	Stereocontrolled total synthesis and biological evaluation of (â^')- and (+)-petrosin and its derivatives. Tetrahedron, 2014, 70, 8129-8141.	1.9	14
77	Asymmetric Total Synthesis of Tylophorine through a Formal [2+2] Cycloaddition Followed by Migrative Ring Opening of a Cyclobutane. Synthesis, 2015, 47, 2819-2825.	2.3	14
78	Synthesis of Functionalized Mediumâ€Sized <i>trans</i> â€Cycloalkenes by 4ï€ Electrocyclic Ring Opening/Alkylation Sequence. Angewandte Chemie - International Edition, 2019, 58, 11836-11840.	13.8	14
79	Facile isomerization of silyl enol ethers catalyzed by triflic imide and its application to one-pot isomerization–(2 + 2) cycloaddition. Beilstein Journal of Organic Chemistry, 2012, 8, 658-661.	2.2	13
80	Oxa- and Azacycle Formation via Migrative Cyclization of Sulfonylalkynol and Sulfonylalkynamide with N-Heterocyclic Carbene. Journal of Organic Chemistry, 2016, 81, 2652-2664.	3.2	13
81	Antileishmanial Activities of Rhodacyanine Dyes. Heterocycles, 2004, 64, 215.	0.7	13
82	Unusual Regioselective Intramolecular Dielsâ^'Alder Reaction Forming Tricyclo[4.3.1.03,7]decane System. Journal of Organic Chemistry, 2002, 67, 2881-2884.	3.2	12
83	Asymmetric Synthesis of 4-Substituted 2,6-Dioxopiperidine-3-carbonitrile by Using Thiourea-Catalyzed Asymmetric Michael Addition. Heterocycles, 2009, 79, 573.	0.7	12
84	Ï€-Delocalized Lipophilic Cations as New Candidates for Antimalarial, Antitrypanosomal and Antileishmanial Agents: Synthesis, Evaluation of Antiprotozoal Potency, and Insight into Their Action Mechanisms. Chemical and Pharmaceutical Bulletin, 2016, 64, 656-667.	1.3	12
85	Synthesis and Properties of Tribenzocarbazoles via an Acid-Promoted Retro (2+2)-Cycloaddition of Azapropellanes. Journal of Organic Chemistry, 2018, 83, 7994-8002.	3.2	12
86	Polyaza macrocycles containing the piperazine ring as a semi-flexible moiety. Tetrahedron Letters, 1996, 37, 7111-7114.	1.4	11
87	Asymmetric synthesis of tricyclic-cyclobutane by means of enantioselective deprotonation and intramolecular Michael–aldol reaction. Tetrahedron Letters, 2001, 42, 8489-8491.	1.4	11
88	Triflic Imide Catalyzed [3+2] Cycloaddition of Aldimines with α,α-Dimethylallylsilane. Heterocycles, 2009, 77, 187.	0.7	11
89	Organocatalytic Activation of the Leaving Group in the Intramolecular Asymmetric S _N 2′ Reaction. Angewandte Chemie, 2015, 127, 8381-8384.	2.0	11
90	Synthesis of Polycyclic Spirocarbocycles via Acid-Promoted Ring-Contraction/Dearomative Ring-Closure Cascade of Oxapropellanes. Organic Letters, 2019, 21, 7563-7567.	4.6	11

#	Article	IF	CITATIONS
91	Synthesis of a Novel Artemisinin Analogue Having Potent Antimalarial Activity. Heterocycles, 2001, 54, 607.	0.7	11
92	5-exo,5-exo Cascade Cyclizations of Halo-Olefins by Environmentally Friendly Reaction Using Indirect Electrolysis. Heterocycles, 1999, 51, 733.	0.7	11
93	Total Synthesis of (±)-Lepadiformine A via Radical Translocation-Cyclization Reaction. Synlett, 2010, 2010, 822-826.	1.8	10
94	Selective accumulation of rhodacyanine in plasmodial mitochondria is related to the growth inhibition of malaria parasites. Chemical Science, 2010, 1, 206.	7.4	10
95	Selective Synthesis of Polysubstituted Dihydroquinolines and α,β-Unsaturated Amidines by a Catalytic Reaction of Ynamides with Ketimines. Synthesis, 2013, 45, 2328-2336.	2.3	10
96	Synthetic studies toward penitrem E: enantiocontrolled construction of B–E rings. Chemical Communications, 2015, 51, 1070-1073.	4.1	10
97	Syntheses and Biological Activities of Structurally Stiff Rhodacyanines as Novel Antimalarial Candidates. Heterocycles, 2005, 66, 161.	0.7	10
98	Enhanced Molecular Recognition through Substrate–Additive Complex Formation in N-Heterocyclic-Carbene-Catalyzed Kinetic Resolution of α-Hydroxythioamides. ACS Catalysis, 2022, 12, 6100-6107.	11.2	10
99	pH-sensitive DNA cleaving agents: in situ activation by ring contraction of benzo-fused cyclobutanols. Chemical Communications, 2013, 49, 2622.	4.1	9
100	Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc. Journal of Organic Chemistry, 2016, 81, 3809-3817.	3.2	9
101	Total Synthesis of (â^')â€Histrionicotoxin through a Stereoselective Radical Translocation–Cyclization Reaction. Angewandte Chemie, 2017, 129, 1107-1111.	2.0	9
102	Total Syntheses of Allelopathic 4-Oxyprotoilludanes, Melleolides, and Echinocidins. Journal of Organic Chemistry, 2019, 84, 11014-11024.	3.2	9
103	Cascade and Multicomponent Reactions towards Rapid Synthesis of Highly Functionalized Cyclobutanes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 554-563.	0.1	9
104	Novel Intramolecular (4 + 1) and (4 + 2) Annulations of Halopolyenes by Cascade Radical Reaction. Organic Letters, 2000, 2, 3579-3581.	4.6	8
105	BrÃ,nsted Acid-Thiourea Co-catalysis: Asymmetric Synthesis of FunctionÂalized 1,4-Dihydropyridines from β-Enamino Esters and α,β-Unsaturated ÂAldehydes. Synlett, 2010, 2010, 1865-1869.	1.8	8
106	Hydrostannylation–Crossâ€Coupling Strategy for the Stereoselective Synthesis of Alkylidenemalonates and Related α,βâ€Unsaturated Esters. European Journal of Organic Chemistry, 2015, 2015, 1264-1272.	2.4	8
107	Synthesis of Multisubstituted Silyloxyâ€based Donorâ€Acceptor Cyclobutanes by an Acid atalyzed [2+2] Cycloaddition. Israel Journal of Chemistry, 2016, 56, 488-498.	2.3	8
108	Synthesis of multi-substituted cyclobutenes: Cyclic strategy for [2 + 2] cycloaddition of ketene silyl acetals with propiolates. Tetrahedron Letters, 2017, 58, 2944-2947.	1.4	8

#	Article	IF	CITATIONS
109	Optical resolution via catalytic generation of chiral auxiliary. Tetrahedron Letters, 2019, 60, 175-177.	1.4	8
110	Phosphine-Promoted Migrative Cyclization of Sulfonylalkynol and Sulfonylalkynamide for the Synthesis of Oxa- and Azacycles. Heterocycles, 2017, 95, 314.	0.7	8
111	Equilibration of the [2+2] Cycloaddition of Silyl Enol Ethers Catalyzed by Ethylaluminium Dichloride: Diastereoselectivity Switch in the Synthesis of Fused Cyclobutanes. Asian Journal of Organic Chemistry, 2014, 3, 706-710.	2.7	7
112	Synthesis of steroidal derivatives bearing a small ring using a catalytic [2+2] cycloaddition and a ring-contraction rearrangement. Tetrahedron, 2015, 71, 233-244.	1.9	7
113	Mechanistic Support for Intramolecular Migrative Cyclization of Propargyl Sulfones Provided by Catalytic Asymmetric Induction with a Chiral Counter Cation Strategy. Asian Journal of Organic Chemistry, 2021, 10, 1828-1834.	2.7	7
114	2-(Chlorodiisopropylsilyl)-6-(trimethylsilyl)phenyl triflate: a modified platform for intramolecular benzyne cycloadditions. Chemical Communications, 2021, 57, 11863-11866.	4.1	7
115	Palladium-Mediated Ring Closure Reactions. Facile Syntheses of Enantiopure Bicyclic and Tricyclic Alkenones. Tetrahedron, 2000, 56, 7389-7398.	1.9	6
116	Synthesis and Properties of Chiral Thioureas Bearing an Additional Function at a Remote Position Tethered by a 1,5-Disubstituted Triazole. Molecules, 2010, 15, 8327-8348.	3.8	6
117	Synthesis of 2,3,4,5-tetra-substituted pyrroles via a base-promoted double Michael reaction of oxime-enoates with nitroolefins. Tetrahedron Letters, 2013, 54, 4073-4075.	1.4	6
118	Contiguous radical pivaloyloxymethylation–directed C(sp 3)–H iodination of N -tosyl cycloalkanecarbaldimine. Tetrahedron Letters, 2015, 56, 3086-3089.	1.4	5
119	Synthesis of Functionalized Mediumâ€Sized <i>trans</i> â€Cycloalkenes by 4ï€ Electrocyclic Ring Opening/Alkylation Sequence. Angewandte Chemie, 2019, 131, 11962-11966.	2.0	5
120	Total Synthesis of (â^')-Sigillin A: A Polychlorinated and Polyoxygenated Natural Product. Organic Letters, 2020, 22, 7721-7724.	4.6	5
121	Unprecedented Synthesis of N,N-Divinylamines by Tf2NH-Catalyzed Reaction of Ynamide with Ketimine. Heterocycles, 2010, 82, 1133.	0.7	5
122	Facile synthesis of optically active cis-2,5-diphenyl-1,4-diazabicyclo[2.2.2]octane. Tetrahedron: Asymmetry, 1996, 7, 1749-1751.	1.8	4
123	Synthesis and biological evaluation of steroidal derivatives bearing a small ring as vitamin D receptor agonists. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3408-3411.	2.2	4
124	Synthesis of Azaheterocycles and Related Molecules by Tf2NH-Catalyzed Cycloadditions. Heterocycles, 2018, 96, 195.	0.7	4
125	Catalytic Substrateâ€Selective Silylation of Primary Alcohols via Remote Functionalâ€Group Discrimination. Angewandte Chemie - International Edition, 2021, , .	13.8	4
126	Conformation of 1,4-Dineopentyl-2,5-cis-diphenylpiperazine and Its Diammonium Salts: Remarkable Change in Conformation Depending upon the Counter Anion Chemical and Pharmaceutical Bulletin, 2001, 49, 655-656.	1.3	3

#	Article	IF	CITATIONS
127	Total Synthesis of Phenanthroquinolizidine Alkaloid Cryptopleurine and Phenanthroindolizidine Alkaloid Tylophorine. Heterocycles, 2018, 97, 292.	0.7	3
128	Asymmetric Substitution Reactions Catalyzed by a Chiral Phosphoric Acid. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 325-335.	0.1	3
129	Propylparaben: Physical Characteristics. Profiles of Drug Substances, Excipients and Related Methodology, 2003, 30, 235-269.	8.0	2
130	Study of Ring-Opening Reaction of Spiro[5.2]octenes with Aqueous HydroÂhalic Acid: Substituent Effect on the Regioselectivity. Synlett, 2012, 24, 120-124.	1.8	2
131	Silyl enol etherification by a Tf2NH/amine co-catalytic system for minimizing hazardous waste generation. Reaction Chemistry and Engineering, 2018, 3, 626-630.	3.7	2
132	The rationale for stereoinduction in conjugate addition to alkylidenemalonates bearing a menthol-derived chiral auxiliary. Tetrahedron, 2021, 91, 132220.	1.9	2
133	Auto-tandem Catalysis of Triflic Imide in Organic Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 770-780.	0.1	2
134	Conformational Difference between Mono- and Diprotonated cis-2,5-Diphenylpiperazinium Salts in the Solid State Chemical and Pharmaceutical Bulletin, 2000, 48, 2014-2016.	1.3	1
135	Oxidative β-Cleavage of Fused Cyclobutanols Leading to Hydrofuran-Fused Polycyclic Aromatic Compounds. Journal of Organic Chemistry, 2021, 86, 12615-12622.	3.2	1
136	Lewis Acid-Catalyzed Diastereoselective Domino Reaction of Ene-Ynamide with Trimethylsilyl Cyanide to Construct Spiroindolines. Organic Letters, 2022, 24, 4389-4393.	4.6	1
137	Novel Intramolecular [4 + 1] and [4 + 2] Annulation Reactions Employing Cascade Radical Cyclizations ChemInform, 2003, 34, no.	0.0	Ο
138	Parallel Synthesis of Antimalarial Rhodacyanine Dyes by the Combination of Three Components in One Pot ChemInform, 2003, 34, no.	0.0	0
139	A Direct Entry to Substituted Piperidinones from α,β-Unsaturated Amides by Means of Aza Double Michael Reaction ChemInform, 2004, 35, no.	0.0	0
140	An Auxiliary Induced Asymmetric Synthesis of Functionalized Cyclobutanes by Means of Catalytic [2 + 2]-Cycloaddition Reaction ChemInform, 2004, 35, no.	0.0	0
141	Catalytic [2 + 2]-Cycloaddition Reactions of Silyl Enol Ethers. A Convenient and Stereoselective Method for Cyclobutane Ring Formation ChemInform, 2004, 35, no.	0.0	0
142	Palladium-Catalyzed Hydroamidation Reaction of Enones ChemInform, 2005, 36, no.	0.0	0
143	1-Aza-2-siloxybutadiene: Structure and Synthetic Application as a Piperidinone Synthon ChemInform, 2005, 36, no.	0.0	0
144	Synthesis of Medium-Sized Cyclic Î ³ -Haloketones by Radical-Mediated Ring-Opening Reaction of Lewis Acid Catalyzed [2 + 2]-Cycloaddition Products ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
145	A Practical Catalytic Method for Preparing Highly Substituted Cyclobutanes and Cyclobutenes ChemInform, 2005, 36, no.	0.0	0
146	Synthesis of Lactone-Fused Cyclopropanes by Ring Contractive α-Ketol Rearrangement of Ketal-Fused Cyclobutanones. Heterocycles, 2021, 103, 177.	0.7	0
147	Novel Antimalarial Agents Targeting Parasitic Organelle; Antimalarial Activity of Î-Delocalized Lipophilic Cations. , 2003, , 331.		0
148	Catalytic Substrateâ€Selective Silylation of Primary Alcohols via Remote Functionalâ€Group Discrimination. Angewandte Chemie, 0, , .	2.0	0