Kohzo Ito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3256631/publications.pdf

Version: 2024-02-01

109321 102487 4,553 91 35 66 citations h-index g-index papers 91 91 91 3413 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Fracture Behavior of Polyrotaxane-Toughened Poly(Methyl Methacrylate). Langmuir, 2022, 38, 2335-2345.	3.5	7
2	Molecular Recognition of Fluorescent Probe Molecules with a Pseudopolyrotaxane Nanosheet. ACS Macro Letters, 2021, 10, 237-242.	4.8	13
3	Crack velocity dependent toughness of polyrotaxane networks: The sliding dynamics of rings on polymer under stretching. Mechanics of Materials, 2021, 156, 103784.	3.2	9
4	Tough hydrogels with rapid self-reinforcement. Science, 2021, 372, 1078-1081.	12.6	343
5	Mechanical and scratch behaviors of <scp>polyrotaxaneâ€modified</scp> poly(methyl methacrylate). Journal of Applied Polymer Science, 2021, 138, 51237.	2.6	8
6	Boron nitride with high zeta potential via plasma processing in solution for preparation of polyrotaxane composite. Journal Physics D: Applied Physics, 2021, 54, 425202.	2.8	11
7	Softness, Elasticity, and Toughness of Polymer Networks with Slide-Ring Cross-Links. Gels, 2021, 7, 91.	4.5	24
8	Freestanding Tough Glassy Membranes Produced by Simple Solvent Casting of Polyrotaxane Derivatives. ACS Applied Polymer Materials, 2021, 3, 4177-4183.	4.4	5
9	Fabrication of polyrotaxane and graphene nanoplate composites with high thermal conductivities. Polymer Composites, 2021, 42, 5556-5563.	4.6	6
10	Hydrogen-Bonded Structure of Water in the Loop of Anchored Polyrotaxane Chain Controlled by Anchoring Density. Frontiers in Chemistry, 2021, 9, 743255.	3.6	1
11	Direct enhancement of intercomponent interactions in polyrotaxane and its pronounced effects on glass state properties. Chemical Communications, 2021, 57, 12472-12475.	4.1	3
12	Polymer Brush Formation Assisted by the Hierarchical Self-Assembly of Topological Supramolecules. ACS Applied Materials & Distribution (2011), 13, 60446-60453.	8.0	2
13	Effects of Ring Size on the Dynamics of Polyrotaxane Glass. Macromolecules, 2020, 53, 8910-8917.	4.8	10
14	Anisotropic Amorphous X-ray Diffraction Attributed to the Orientation of Cyclodextrin. Journal of Physical Chemistry Letters, 2020, 11, 6201-6205.	4.6	10
15	Precise control of cyclodextrin-based pseudo-polyrotaxane lamellar structure <i>via</i> axis polymer composition. Soft Matter, 2020, 16, 9035-9041.	2.7	5
16	Molecular Dynamics Simulation and Theoretical Model of Elasticity in Slide-Ring Gels. ACS Macro Letters, 2020, 9, 1280-1285.	4.8	22
17	Slide-Ring Material/Highly Dispersed Graphene Oxide Composite with Mechanical Strength and Tunable Electrical Conduction as a Stretchable-Base Substrate. ACS Applied Materials & Samp; Interfaces, 2020, 12, 47911-47920.	8.0	7
18	Synthesis of Poly(Methyl Methacrylate)-Based Polyrotaxane via Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Macro Letters, 2020, 9, 1853-1857.	4.8	3

#	Article	IF	CITATIONS
19	Adhesion Force Analysis of Dynamic Polymer Brushes. Langmuir, 2020, 36, 6210-6215.	3.5	4
20	Viscoelastic relaxation attributed to the molecular dynamics of polyrotaxane confined in an epoxy resin network. Polymer Journal, 2020, 52, 1211-1221.	2.7	14
21	Highly Transparent and Tough Filler Composite Elastomer Inspired by the Cornea. , 2020, 2, 325-330.		21
22	Dynamic Light Scattering Study on Particle Diffusion in Slide-Ring Gels: Enhanced Fluctuation of Sliding Networks. Nihon Reoroji Gakkaishi, 2020, 48, 161-168.	1.0	1
23	Prolonged Glass Transition due to Topological Constraints in Polyrotaxanes. Journal of the American Chemical Society, 2019, 141, 12502-12506.	13.7	27
24	Formation of well-defined supramolecular microstructures consisting of γ-cyclodextrin and polyether â€"rods, cubes, plates, and nanosheetsâ€"guided by guest polymer structure. Polymer, 2019, 179, 121689.	3.8	9
25	Slide-Ring Cross-Links Mediated Tough Metallosupramolecular Hydrogels with Superior Self-Recoverability. Macromolecules, 2019, 52, 6748-6755.	4.8	68
26	Direct Determination of Cross-Link Density and Its Correlation with the Elastic Modulus of a Gel with Slidable Cross-Links. ACS Macro Letters, 2019, 8, 700-704.	4.8	42
27	Mechanical and Fracture Properties of Dynamically Cross-Linked Polymer Gels and Elastomers with Molecular Necklaces. Nihon Reoroji Gakkaishi, 2019, 47, 43-49.	1.0	1
28	Formation of Isolated Pseudo-Polyrotaxane Nanosheet Consisting of α-Cyclodextrin and Poly(ethylene) Tj ETQqC	0 0 rgBT 4.8	/Overlock 10
29	Molecular Dynamics of Polyrotaxane in Solution Investigated by Quasi-Elastic Neutron Scattering and Molecular Dynamics Simulation: Sliding Motion of Rings on Polymer. Journal of the American Chemical Society, 2019, 141, 9655-9663.	13.7	50
30	Direct Observation of Large Deformation and Fracture Behavior at the Crack Tip of Slide-Ring Gel. Journal of the Electrochemical Society, 2019, 166, B3143-B3147.	2.9	19
31	Autonomously isolated pseudo-polyrotaxane nanosheets fabricated <i>via</i> hierarchically ordered supramolecular self-assembly. Chemical Communications, 2019, 55, 4158-4161.	4.1	17
32	Drastic Change of Mechanical Properties of Polyrotaxane Bulk: ABA–BAB Sequence Change Depending on Ring Position. ACS Macro Letters, 2019, 8, 140-144.	4.8	13
33	Efficient mechanical toughening of polylactic acid without substantial decreases in stiffness and transparency by the reactive grafting of polyrotaxanes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 93, 107-116.	1.6	10
34	Pronounced effects of the densities of threaded rings on the strain-dependent Poisson's ratio of polyrotaxane gels with movable cross-links. Soft Matter, 2018, 14, 2808-2815.	2.7	5
35	Thermally conductive tough flexible elastomers as composite of slide-ring materials and surface modified boron nitride particles via plasma in solution. Applied Physics Letters, 2018, 112, .	3.3	26
36	Optically transparent, high-toughness elastomer using a polyrotaxane cross-linker as a molecular pulley. Science Advances, 2018, 4, eaat7629.	10.3	114

#	Article	IF	CITATIONS
37	Highly Stretchable and Instantly Recoverable Slide-Ring Gels Consisting of Enzymatically Synthesized Polyrotaxane with Low Host Coverage. Chemistry of Materials, 2018, 30, 5013-5019.	6.7	120
38	Mechanical properties of supramolecular elastomers prepared from polymer-grafted polyrotaxane. Polymer, 2017, 128, 386-391.	3.8	48
39	Synthesis and surface characterization of well-defined amphiphilic block copolymers composed of polydimethylsiloxane and poly[oligo(ethylene glycol) methacrylate]. RSC Advances, 2017, 7, 25199-25207.	3.6	10
40	Effect of Topological Constraint and Confined Motions on the Viscoelasticity of Polyrotaxane Glass with Different Interactions between Rings. Journal of Physical Chemistry C, 2017, 121, 1861-1869.	3.1	28
41	Highly Responsive Hydrogel Prepared Using Poly($\langle i \rangle N \langle i \rangle$ -isopropylacrylamide)-Grafted Polyrotaxane as a Building Block Designed by Reversible Deactivation Radical Polymerization and Click Chemistry. Macromolecules, 2017, 50, 364-374.	4.8	38
42	Thermally Healable and Reprocessable Bis(hindered amino)disulfide-Cross-Linked Polymethacrylate Networks. ACS Macro Letters, 2017, 6, 1280-1284.	4.8	83
43	Ductile Glass of Polyrotaxane Toughened by Stretch-Induced Intramolecular Phase Separation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32436-32440.	8.0	27
44	Unusual Fracture Behavior of Slide-Ring Gels with Movable Cross-Links. ACS Macro Letters, 2017, 6, 1409-1413.	4.8	86
45	Volume Phase Transitions of Slide-Ring Gels. Polymers, 2016, 8, 217.	4.5	6
46	Inclusion Complex of \hat{l} ±-Cyclodextrin with Poly(ethylene glycol) Brush. Macromolecules, 2016, 49, 6947-6952.	4.8	27
47	Self-assembled Structure of Polyrotaxane Consisting of \hat{l}^2 -Cyclodextrin and Poly(ethylene) Tj ETQq1 1 0.784314 System. Chemistry Letters, 2016, 45, 991-993.	rgBT /Ove	erlock 10 Tf 5 17
48	Tunable Thermoresponsive Mesoporous Block Copolymer Membranes. Macromolecules, 2016, 49, 7886-7896.	4.8	15
49	Molecular weight dependency of polyrotaxane-cross-linked polymer gel extensibility. Chemical Communications, 2016, 52, 13757-13759.	4.1	41
50	Synthesis, structure, and mechanical properties of silica nanocomposite polyrotaxane gels. Beilstein Journal of Organic Chemistry, 2015, 11, 2194-2201.	2,2	16
51	Dielectric elastomer actuator with excellent electromechanical performance using slide-ring materials/barium titanate composites. Journal of Materials Chemistry A, 2015, 3, 9468-9479.	10.3	94
52	Polyrotaxane Glass: Peculiar Mechanics Attributable to the Isolated Dynamics of Different Components. Journal of Physical Chemistry Letters, 2015, 6, 4043-4048.	4.6	33
53	Miscibility, intramolecular specific interactions and mechanical properties of a DGEBA based epoxy resin toughened with a sliding graft copolymer. Chinese Journal of Polymer Science (English Edition), 2015, 33, 433-443.	3.8	15
54	A significant impact of host–guest stoichiometry on the extensibility of polyrotaxane gels. Chemical Communications, 2015, 51, 16180-16183.	4.1	63

#	Article	IF	CITATIONS
55	Synthesis of graft polyrotaxane by simultaneous capping of backbone and grafting from rings of pseudo-polyrotaxane. Beilstein Journal of Organic Chemistry, 2014, 10, 2573-2579.	2.2	10
56	From topological gels to slideâ€ring materials. Journal of Applied Polymer Science, 2014, 131, .	2.6	145
57	Applicability of a particularly simple model to nonlinear elasticity of slide-ring gels with movable cross-links as revealed by unequal biaxial deformation. Journal of Chemical Physics, 2014, 141, 134906.	3.0	19
58	Peculiar elasticity and strain hardening attributable to counteractingÂentropy of chain and ring in slide-ring gels. Polymer, 2014, 55, 2614-2619.	3.8	29
59	Swelling measurement of polymers in high pressure carbon dioxide using a spectroscopic reflectometer. Journal of Supercritical Fluids, 2014, 95, 553-559.	3.2	16
60	Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nature Communications, 2014, 5, 5124.	12.8	441
61	Pressureâ€Responsive Polymer Membranes of Slideâ€Ring Gels with Movable Crossâ€Links. Advanced Materials, 2013, 25, 4636-4640.	21.0	93
62	Viscoelastic Properties of Slide-Ring Gels Reflecting Sliding Dynamics of Partial Chains and Entropy of Ring Components. Macromolecules, 2013, 46, 310-316.	4.8	67
63	Large increase in actuated strain of HNBR dielectric elastomer by controlling molecular interaction and dielectric filler network. RSC Advances, 2013, 3, 21896.	3.6	47
64	Retrograde order–disorder transition of a semi-fluorinated block copolymer induced by supercritical carbon dioxide. Soft Matter, 2013, 9, 10689.	2.7	8
65	Structure and dynamics of polyrotaxane-based sliding graft copolymers with alkyl side chains. Soft Matter, 2013, 9, 1895-1901.	2.7	22
66	Novel entropic elasticity of polymeric materials: why is slide-ring gel so soft?. Polymer Journal, 2012, 44, 38-41.	2.7	109
67	Influence of Structural Characteristics on Stretching-Driven Swelling of Polyrotaxane Gels with Movable Cross Links. Macromolecules, 2012, 45, 6733-6740.	4.8	25
68	Ordered and foam structures of semifluorinated block copolymers in supercritical carbon dioxide. Soft Matter, 2012, 8, 5811.	2.7	30
69	Mechanics of slide-ring gels: novel entropic elasticity of a topological network formed by ring and string. Soft Matter, 2012, 8, 8179.	2.7	79
70	Dynamic transition between rubber and sliding states attributed to slidable cross-links. Soft Matter, 2011, 7, 8737.	2.7	59
71	Peculiar Nonlinear Elasticity of Polyrotaxane Gels with Movable Cross-Links Revealed by Multiaxial Stretching. Macromolecules, 2011, 44, 8661-8667.	4.8	49
72	Preparation and study of alkyl carbamylated polyrotaxanes with large hysteresis during sol–gel phase transition. Polymer Chemistry, 2011, 2, 1797.	3.9	10

#	Article	IF	CITATIONS
73	Orientational motions in mesogenic polyrotaxane and local mode relaxations of polymer segments in solid state polyrotaxane. Soft Matter, 2011, 7, 922-928.	2.7	27
74	Surface Modification of Slide-Ring Gel by Strip-line Microwave Micro Atmospheric Plasma. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 535-540.	0.3	1
75	Hydrophobic and hydrophilic polyrotaxane based movable cross-linkers for thermo-sensitive $poly(\langle i \rangle N \langle i \rangle$ -isopropylacrylamide) gels. Transactions of the Materials Research Society of Japan, 2010, 35, 291-297.	0.2	2
76	Facile synthesis of sliding poly(NIPA) gels using a vinyl modified polyrotaxane as a cross-linker. Transactions of the Materials Research Society of Japan, 2010, 35, 841-844.	0.2	3
77	Poly(<i>N</i> -isopropylacrylamide) Gel Prepared Using a Hydrophilic Polyrotaxane-Based Movable Cross-Linker. Macromolecules, 2010, 43, 1975-1980.	4.8	57
78	Slide-ring materials using topological supramolecular architecture. Current Opinion in Solid State and Materials Science, 2010, 14, 28-34.	11.5	144
79	Anomaly in Stretching-Induced Swelling of Slide-Ring Gels with Movable Cross-Links. Macromolecules, 2009, 42, 8485-8491.	4.8	38
80	Effective Production of Poly(3-alkylthiophene) Nanofibers by means of Whisker Method using Anisole Solvent: Structural, Optical, and Electrical Properties. Macromolecules, 2008, 41, 8000-8010.	4.8	255
81	Fabrication of mechanically improved hydrogels using a movable cross-linker based on vinyl modified polyrotaxane. Chemical Communications, 2008, , 5227.	4.1	48
82	Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. Soft Matter, 2007, 3, 1456.	2.7	280
83	New solvent for polyrotaxane. III. Dissolution of a poly(ethylene glycol)/cyclodextrin polyrotaxane in a calcium thiocyanate aqueous solution orN-methylmorpholine-N-oxide monohydrate. Journal of Applied Polymer Science, 2007, 105, 2265-2270.	2.6	14
84	Small-Angle X-ray Scattering Study of the Pulley Effect of Slide-Ring Gels. Macromolecules, 2006, 39, 7386-7391.	4.8	98
85	Polyrotaxane derivatives. I. Preparation of modified polyrotaxanes with nonionic functional groups and their solubility in organic solvents. Journal of Polymer Science Part A, 2006, 44, 6312-6323.	2.3	79
86	New solvent for polyrotaxane. II. Dissolution behavior of polyrotaxane in ionic liquids and preparation of ionic liquid-containing slide-ring gels. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1985-1994.	2.1	59
87	New solvent for polyrotaxane. I. Dimethylacetamide/lithium chloride (DMAc/LiCl) system for modification of polyrotaxane. Journal of Polymer Science Part A, 2006, 44, 532-538.	2.3	55
88	SANS Studies on Deformation Mechanism of Slide-Ring Gel. Macromolecules, 2005, 38, 6161-6167.	4.8	131
89	Efficient Production of Polyrotaxanes fromα-Cyclodextrin and Poly(ethylene glycol). Macromolecules, 2005, 38, 7524-7527.	4.8	166
90	Atomic force microscopy observation of insulated molecular wire formed by conducting polymer and molecular nanotube. Journal of Chemical Physics, 2002, 116, 1753-1756.	3.0	114

#	Article	IF	CITATIONS
91	Thermally induced disassembly mechanism of pseudo-polyrotaxane nanosheet consisting of \hat{l}^2 -CD and poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer. Polymer Chemistry, 0, , .	3.9	1