
LoÃ⁻c RiviÃ⁻re

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3256626/publications.pdf Version: 2024-02-01

LOÃO RIVIÃ"DE

#	Article	IF	CITATIONS
1	Energy metabolism of trypanosomatids: Adaptation to available carbon sources. Molecular and Biochemical Parasitology, 2006, 149, 1-9.	1.1	351
2	Proline Metabolism in Procyclic Trypanosoma brucei Is Down-regulated in the Presence of Glucose. Journal of Biological Chemistry, 2005, 280, 11902-11910.	3.4	190
3	Glucose-induced Remodeling of Intermediary and Energy Metabolism in Procyclic Trypanosoma brucei. Journal of Biological Chemistry, 2008, 283, 16342-16354.	3.4	113
4	Acetate produced in the mitochondrion is the essential precursor for lipid biosynthesis in procyclic trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12694-12699.	7.1	72
5	The threonine degradation pathway of the <i><scp>T</scp>rypanosoma brucei</i> procyclic form: the main carbon source for lipid biosynthesis is under metabolic control. Molecular Microbiology, 2013, 90, 114-129.	2.5	58
6	Glycerol supports growth of the Trypanosoma brucei bloodstream forms in the absence of glucose: Analysis of metabolic adaptations on glycerol-rich conditions. PLoS Pathogens, 2018, 14, e1007412.	4.7	32
7	Procyclic trypanosomes recycle glucose catabolites and TCA cycle intermediates to stimulate growth in the presence of physiological amounts of proline. PLoS Pathogens, 2021, 17, e1009204.	4.7	16
8	Glycerol suppresses glucose consumption in trypanosomes through metabolic contest. PLoS Biology, 2021, 19, e3001359.	5.6	7
9	Novel protein candidates for serodiagnosis of African animal trypanosomosis: Evaluation of the diagnostic potential of lysophospholipase and glycerol kinase from Trypanosoma brucei. PLoS Neglected Tropical Diseases, 2021, 15, e0009985.	3.0	6
10	A novel lipase with dual localisation in Trypanosoma brucei. Scientific Reports, 2022, 12, 4766.	3.3	4
11	A multigene family encoding surface glycoproteins in Trypanosoma congolense. Microbial Cell, 2017, 4, 90-97.	3.2	3
12	Glycerol, a possible new player in the biology of trypanosomes. PLoS Pathogens, 2021, 17, e1010035.	4.7	3
13	Confining Trypanosoma brucei in emulsion droplets reveals population variabilities in division rates and improves in vitro cultivation. Scientific Reports, 2021, 11, 18192.	3.3	2