Jason W Rosch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3256540/publications.pdf Version: 2024-02-01

IASON W POSCH

#	Article	IF	CITATIONS
1	Dysregulation of Streptococcus pneumoniae zinc homeostasis breaks ampicillin resistance in a pneumonia infection model. Cell Reports, 2022, 38, 110202.	6.4	18
2	Secondary infection with <i>Streptococcus pneumoniae</i> decreases influenza virus replication and is linked to severe disease. FEMS Microbes, 2022, 3, xtac007.	2.1	9
3	Effect of Oral Streptococci Expressing Pneumococcus-like Cross-Reactive Capsule Types on World Health Organization Recommended Pneumococcal Carriage Detection Procedure. Clinical Infectious Diseases, 2022, 75, 647-656.	5.8	7
4	Immunosuppression broadens evolutionary pathways to drug resistance and treatment failure during Acinetobacter baumannii pneumonia in mice. Nature Microbiology, 2022, 7, 796-809.	13.3	17
5	A genome-wide atlas of antibiotic susceptibility targets and pathways to tolerance. Nature Communications, 2022, 13, .	12.8	12
6	Transkingdom Interactions Important for the Pathogenesis of Human Viruses. Journal of Infectious Diseases, 2021, 223, S201-S208.	4.0	6
7	Pneumococcal Colonization and Virulence Factors Identified Via Experimental Evolution in Infection Models. Molecular Biology and Evolution, 2021, 38, 2209-2226.	8.9	9
8	The actin-regulatory protein Hem-1 is essential for alveolar macrophage development. Journal of Experimental Medicine, 2021, 218, .	8.5	10
9	Antibiotic prophylaxis and the gastrointestinal resistome in paediatric patients with acute lymphoblastic leukaemia: a cohort study with metagenomic sequencing analysis. Lancet Microbe, The, 2021, 2, e159-e167.	7.3	10
10	Polymicrobial Interactions Operative during Pathogen Transmission. MBio, 2021, 12, .	4.1	1
11	Dynamic Pneumococcal Genetic Adaptations Support Bacterial Growth and Inflammation during Coinfection with Influenza. Infection and Immunity, 2021, 89, e0002321.	2.2	6
12	A Tn-seq Screen of Streptococcus pneumoniae Uncovers DNA Repair as the Major Pathway for Desiccation Tolerance and Transmission. Infection and Immunity, 2021, 89, e0071320.	2.2	8
13	Oleate Hydratase (OhyA) Is a Virulence Determinant in Staphylococcus aureus. Microbiology Spectrum, 2021, 9, e0154621.	3.0	8
14	JMM Profile: Streptococcus pneumoniae: sugar-coated captain of the men of death. Journal of Medical Microbiology, 2021, 70, .	1.8	6
15	Streptococcus pneumoniaemetal homeostasis alters cellular metabolism. Metallomics, 2020, 12, 1416-1427.	2.4	13
16	Cadmium stress dictates central carbon flux and alters membrane composition in Streptococcus pneumoniae. Communications Biology, 2020, 3, 694.	4.4	19
17	Pneumolysin: Pathogenesis and Therapeutic Target. Frontiers in Microbiology, 2020, 11, 1543.	3.5	57
18	Advancing Genetic Tools in Streptococcus pneumoniae. Genes, 2020, 11, 965.	2.4	7

#	Article	IF	CITATIONS
19	Respiratory Bacteria Stabilize and Promote Airborne Transmission of Influenza A Virus. MSystems, 2020, 5, .	3.8	22
20	Vancomycin Heteroresistance and Clinical Outcomes in Bloodstream Infections Caused by Coagulase-Negative Staphylococci. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	13
21	Host Fatty Acid Utilization by Staphylococcus aureus at the Infection Site. MBio, 2020, 11, .	4.1	26
22	Evolution of vancomycin-resistant <i>Enterococcus faecium</i> during colonization and infection in immunocompromised pediatric patients. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11703-11714.	7.1	36
23	Experimental Evolution <i>In Vivo</i> To Identify Selective Pressures during Pneumococcal Colonization. MSystems, 2020, 5, .	3.8	18
24	Role of the pyruvate metabolic network on carbohydrate metabolism and virulence in <i>Streptococcus pneumoniae</i> . Molecular Microbiology, 2020, 114, 536-552.	2.5	24
25	Astrovirus infects actively secreting goblet cells and alters the gut mucus barrier. Nature Communications, 2020, 11, 2097.	12.8	61
26	Caging and COM-Bating Antibiotic Resistance. Cell Host and Microbe, 2020, 27, 489-490.	11.0	3
27	Influences of Vitamin A on Vaccine Immunogenicity and Efficacy. Frontiers in Immunology, 2019, 10, 1576.	4.8	34
28	A Cross-Reactive Protein Vaccine Combined with PCV-13 Prevents Streptococcus pneumoniae- and Haemophilus influenzae-Mediated Acute Otitis Media. Infection and Immunity, 2019, 87, .	2.2	7
29	Total RNA Analysis of Bacterial Community Structural and Functional Shifts Throughout Vertebrate Decomposition. Journal of Forensic Sciences, 2019, 64, 1707-1719.	1.6	12
30	Direct interactions with influenza promote bacterial adherence during respiratory infections. Nature Microbiology, 2019, 4, 1328-1336.	13.3	106
31	Bacterial Factors Required for Transmission of Streptococcus pneumoniae in Mammalian Hosts. Cell Host and Microbe, 2019, 25, 884-891.e6.	11.0	48
32	Bacterial Community Succession, Transmigration, and Differential Gene Transcription in a Controlled Vertebrate Decomposition Model. Frontiers in Microbiology, 2019, 10, 745.	3.5	25
33	Efficacy of Aminomethyl Spectinomycins against Complex Upper Respiratory Tract Bacterial Infections. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	4
34	Detection of critical antibiotic resistance genes through routine microbiome surveillance. PLoS ONE, 2019, 14, e0213280.	2.5	26
35	Close Encounters of the Viral Kind: Crossâ€Kingdom Synergies at the Host–Pathogen Interface. BioEssays, 2019, 41, 1900128.	2.5	2
36	Allergic inflammation alters the lung microbiome and hinders synergistic co-infection with H1N1 influenza virus and Streptococcus pneumoniae in C57BL/6 mice. Scientific Reports, 2019, 9, 19360.	3.3	23

#	Article	IF	CITATIONS
37	Convergence of Inflammatory Pathways in Allergic Asthma and Sickle Cell Disease. Frontiers in Immunology, 2019, 10, 3058.	4.8	6
38	Gut Microbiome Composition Predicts Infection Risk During Chemotherapy in Children With Acute Lymphoblastic Leukemia. Clinical Infectious Diseases, 2018, 67, 541-548.	5.8	122
39	Inflammatory molecule reduction with hydroxyurea therapy in children with sickle cell anemia. Haematologica, 2018, 103, e50-e54.	3.5	25
40	The Transcriptional landscape of Streptococcus pneumoniae TIGR4 reveals a complex operon architecture and abundant riboregulation critical for growth and virulence. PLoS Pathogens, 2018, 14, e1007461.	4.7	37
41	Fitness Landscape of the Immune Compromised Favors the Emergence of Antibiotic Resistance. ACS Infectious Diseases, 2018, 4, 1275-1277.	3.8	7
42	Protective Capacity of Statins during Pneumonia Is Dependent on Etiological Agent and Obesity. Frontiers in Cellular and Infection Microbiology, 2018, 8, 41.	3.9	9
43	Vascular Permeability Drives Susceptibility to Influenza Infection in a Murine Model of Sickle Cell Disease. Scientific Reports, 2017, 7, 43308.	3.3	7
44	Saccharomyces cerevisiae -derived virus-like particle parvovirus B19 vaccine elicits binding and neutralizing antibodies in a mouse model for sickle cell disease. Vaccine, 2017, 35, 3615-3620.	3.8	18
45	RelA Mutant <i>Enterococcus faecium</i> with Multiantibiotic Tolerance Arising in an Immunocompromised Host. MBio, 2017, 8, .	4.1	72
46	Prevnar-13 vaccine failure in a mouse model for vitamin A deficiency. Vaccine, 2017, 35, 6264-6268.	3.8	14
47	A Perfect Storm: Increased Colonization and Failure of Vaccination Leads to Severe Secondary Bacterial Infection in Influenza Virus-Infected Obese Mice. MBio, 2017, 8, .	4.1	26
48	Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae. Frontiers in Cellular and Infection Microbiology, 2017, 7, 233.	3.9	32
49	Promiscuous signaling by a regulatory system unique to the pandemic PMEN1 pneumococcal lineage. PLoS Pathogens, 2017, 13, e1006339.	4.7	38
50	Pneumococcal neuraminidase activates TGF-β signalling. Microbiology (United Kingdom), 2017, 163, 1198-1207.	1.8	19
51	A Pathogen-Selective Antibiotic Minimizes Disturbance to the Microbiome. Antimicrobial Agents and Chemotherapy, 2016, 60, 4264-4273.	3.2	42
52	Pyruvate oxidase of Streptococcus pneumoniae contributes to pneumolysin release. BMC Microbiology, 2016, 16, 271.	3.3	32
53	AdcAll of Streptococcus pneumoniae Affects Pneumococcal Invasiveness. PLoS ONE, 2016, 11, e0146785.	2.5	39
54	An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathogens, 2016, 12, e1005804.	4.7	37

#	Article	IF	CITATIONS
55	Pyruvate Oxidase as a Critical Link between Metabolism and Capsule Biosynthesis in Streptococcus pneumoniae. PLoS Pathogens, 2016, 12, e1005951.	4.7	93
56	Aminomethyl spectinomycins as therapeutics for drug-resistant respiratory tract and sexually transmitted bacterial infections. Science Translational Medicine, 2015, 7, 288ra75.	12.4	16
57	Role of Copper Efflux in Pneumococcal Pathogenesis and Resistance to Macrophage-Mediated Immune Clearance. Infection and Immunity, 2015, 83, 1684-1694.	2.2	80
58	Live Attenuated Influenza Virus Increases Pneumococcal Translocation and Persistence Within the Middle Ear. Journal of Infectious Diseases, 2015, 212, 195-201.	4.0	21
59	Copper intoxication inhibits aerobic nucleotide synthesis in Streptococcus pneumoniae. Metallomics, 2015, 7, 786-794.	2.4	53
60	Regulatory Strategies of the Pneumococcus. , 2015, , 109-128.		1
61	Characterization of NAD salvage pathways and their role in virulence in Streptococcus pneumoniae. Microbiology (United Kingdom), 2015, 161, 2127-2136.	1.8	20
62	Promises and pitfalls of live attenuated pneumococcal vaccines. Human Vaccines and Immunotherapeutics, 2014, 10, 3000-3003.	3.3	9
63	A liveâ€attenuated pneumococcal vaccine elicits <scp>CD</scp> 4 ⁺ <scp>T</scp> â€eell dependent class switching and provides serotype independent protection against acute otitis media. EMBO Molecular Medicine, 2014, 6, 141-154.	6.9	38
64	Unencapsulated Streptococcus pneumoniae from conjunctivitis encode variant traits and belong to a distinct phylogenetic cluster. Nature Communications, 2014, 5, 5411.	12.8	45
65	Identification of a two-component fatty acid kinase responsible for host fatty acid incorporation by <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10532-10537.	7.1	141
66	Genomic Analyses of Pneumococci from Children with Sickle Cell Disease Expose Host-Specific Bacterial Adaptations and Deficits in Current Interventions. Cell Host and Microbe, 2014, 15, 587-599.	11.0	57
67	Staphylococcus aureus Fatty Acid Auxotrophs Do Not Proliferate in Mice. Antimicrobial Agents and Chemotherapy, 2013, 57, 5729-5732.	3.2	38
68	The roles of transition metals in the physiology and pathogenesis of Streptococcus pneumoniae. Frontiers in Cellular and Infection Microbiology, 2013, 3, 92.	3.9	62
69	Control of Virulence by Small RNAs in Streptococcus pneumoniae. PLoS Pathogens, 2012, 8, e1002788.	4.7	137
70	Hydroxyurea therapy of a murine model of sickle cell anemia inhibits the progression of pneumococcal disease by down-modulating E-selectin. Blood, 2012, 119, 1915-1921.	1.4	29
71	Statins protect against fulminant pneumococcal infection and cytolysin toxicity in a mouse model of sickle cell disease. Journal of Clinical Investigation, 2010, 120, 627-635.	8.2	103
72	Mechanism for Sortase Localization and the Role of Sortase Localization in Efficient Pilus Assembly in <i>Enterococcus faecalis</i> . Journal of Bacteriology, 2009, 191, 3237-3247.	2.2	89

#	Article	IF	CITATIONS
73	Role of the manganese efflux system <i>mntE</i> for signalling and pathogenesis in <i>Streptococcus pneumoniae</i> . Molecular Microbiology, 2009, 72, 12-25.	2.5	129
74	Calcium efflux is essential for bacterial survival in the eukaryotic host. Molecular Microbiology, 2008, 70, 435-444.	2.5	79
75	Convergence of Regulatory Networks on the Pilus Locus of Streptococcus pneumoniae. Infection and Immunity, 2008, 76, 3187-3196.	2.2	49
76	The Signal Recognition Particle Pathway Is Required for Virulence in <i>Streptococcus pyogenes</i> . Infection and Immunity, 2008, 76, 2612-2619.	2.2	23
77	Anionic Lipids Enriched at the ExPortal of Streptococcus pyogenes. Journal of Bacteriology, 2007, 189, 801-806.	2.2	55
78	Adapting a diet from sugar to meat: double-dealing genes of Streptococcus pyogenes. Molecular Microbiology, 2007, 64, 257-259.	2.5	2
79	The ExPortal: an organelle dedicated to the biogenesis of secreted proteins inStreptococcus pyogenes. Molecular Microbiology, 2005, 58, 959-968.	2.5	87
80	A Microdomain for Protein Secretion in Gram-Positive Bacteria. Science, 2004, 304, 1513-1515.	12.6	128