Stephen D Ginsberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3256167/publications.pdf

Version: 2024-02-01

147 papers 9,326 citations

29994 54 h-index 90 g-index

161 all docs

161 docs citations

161 times ranked 10475 citing authors

#	Article	IF	CITATIONS
1	Diseaseâ€specific interactome alterations via epichaperomics: the case for Alzheimer's disease. FEBS Journal, 2022, 289, 2047-2066.	2.2	12
2	Expression and proteolytic processing of the amyloid precursor protein is unaffected by the expression of the three human apolipoprotein E alleles in the brains of mice. Neurobiology of Aging, 2022, 110, 73-76.	1.5	3
3	Co-expression network analysis of frontal cortex during the progression of Alzheimer's disease. Cerebral Cortex, 2022, 32, 5108-5120.	1.6	4
4	Posterior cingulate cortex reveals an expression profile of resilience in cognitively intact elders. Brain Communications, 2022, 4, .	1.5	10
5	Loss of glucocorticoid receptor phosphorylation contributes to cognitive and neurocentric damages of the amyloid- \hat{l}^2 pathway. Acta Neuropathologica Communications, 2022, 10, .	2.4	5
6	Associations Between DNA Methylation Age Acceleration, Depressive Symptoms, and Cardiometabolic Traits in African American Mothers From the InterGEN Study. Epigenetics Insights, 2022, 15, 251686572211097.	0.6	1
7	A method for quantification of vesicular compartments within cells using 3D reconstructed confocal z-stacks: Comparison of ImageJ and Imaris to count early endosomes within basal forebrain cholinergic neurons. Journal of Neuroscience Methods, 2021, 350, 109038.	1.3	21
8	Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome. Science Advances, $2021, 7, .$	4.7	127
9	Profiling Basal Forebrain Cholinergic Neurons Reveals a Molecular Basis for Vulnerability Within the Ts65Dn Model of Down Syndrome and Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 5141-5162.	1.9	12
10	Effects of early-life penicillin exposure on the gut microbiome and frontal cortex and amygdala gene expression. IScience, 2021, 24, 102797.	1.9	25
11	Adiponectin Modulation by Genotype and Maternal Choline Supplementation in a Mouse Model of Down Syndrome and Alzheimer's Disease. Journal of Clinical Medicine, 2021, 10, 2994.	1.0	5
12	Chemical tools for epichaperome-mediated interactome dysfunctions of the central nervous system. Nature Communications, 2021, 12, 4669.	5.8	19
13	Oxidative Phosphorylation Is Dysregulated Within the Basocortical Circuit in a 6-month old Mouse Model of Down Syndrome and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2021, 13, 707950.	1.7	10
14	Maternal Choline Supplementation as a Potential Therapy for Down Syndrome: Assessment of Effects Throughout the Lifespan. Frontiers in Aging Neuroscience, 2021, 13, 723046.	1.7	8
15	The penalty of stress ―Epichaperomes negatively reshaping the brain in neurodegenerative disorders. Journal of Neurochemistry, 2021, 159, 958-979.	2.1	14
16	Pharmacologically controlling protein-protein interactions through epichaperomes for therapeutic vulnerability in cancer. Communications Biology, 2021, 4, 1333.	2.0	11
17	Editorial: Down Syndrome, Neurodegeneration and Dementia. Frontiers in Aging Neuroscience, 2021, 13, 791044.	1.7	2
18	Translational neurophysiological biomarkers of N-methyl-d-aspartate receptor dysfunction in serine racemase knockout mice. Biomarkers in Neuropsychiatry, 2020, 2, 100019.	0.7	8

#	Article	IF	Citations
19	The epichaperome is a mediator of toxic hippocampal stress and leads to protein connectivity-based dysfunction. Nature Communications, 2020, 11, 319.	5.8	46
20	Expression profiling of precuneus layer <scp>III</scp> cathepsin Dâ€immunopositive pyramidal neurons in mild cognitive impairment and Alzheimer's disease: Evidence for neuronal signaling vulnerability. Journal of Comparative Neurology, 2020, 528, 2748-2766.	0.9	5
21	Type I interferon response drives neuroinflammation and synapse loss in Alzheimer disease. Journal of Clinical Investigation, 2020, 130, 1912-1930.	3.9	268
22	Fixation Protocols for Neurohistology: Neurons to Genes. Neuromethods, 2020, , 49-71.	0.2	1
23	Nerve Growth Factor Pathobiology During the Progression of Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 533.	1.4	60
24	Brain-derived neurotrophic factor (BDNF) and TrkB hippocampal gene expression are putative predictors of neuritic plaque and neurofibrillary tangle pathology. Neurobiology of Disease, 2019, 132, 104540.	2.1	32
25	Maternal Choline Supplementation Alters Basal Forebrain Cholinergic Neuron Gene Expression in the Ts65Dn Mouse Model of Down Syndrome. Developmental Neurobiology, 2019, 79, 664-683.	1.5	13
26	Longâ€term effects of maternal choline supplementation on CA1 pyramidal neuron gene expression in the Ts65Dn mouse model of Down syndrome and Alzheimer's disease. FASEB Journal, 2019, 33, 9871-9884.	0.2	16
27	Frontal cortex and striatal cellular and molecular pathobiology in individuals with Down syndrome with and without dementia. Acta Neuropathologica, 2019, 137, 413-436.	3.9	32
28	Calorie restriction slows age-related microbiota changes in an Alzheimer's disease model in female mice. Scientific Reports, 2019, 9, 17904.	1.6	86
29	Apolipoprotein E4 genotype compromises brain exosome production. Brain, 2019, 142, 163-175.	3.7	86
30	Selective decline of neurotrophin and neurotrophin receptor genes within CA1 pyramidal neurons and hippocampus proper: Correlation with cognitive performance and neuropathology in mild cognitive impairment and Alzheimer's disease. Hippocampus, 2019, 29, 422-439.	0.9	45
31	Expression profiling suggests microglial impairment in human immunodeficiency virus neuropathogenesis. Annals of Neurology, 2018, 83, 406-417.	2.8	39
32	CA1 pyramidal neuron gene expression mosaics in the Ts65Dn murine model of Down syndrome and Alzheimer's disease following maternal choline supplementation. Hippocampus, 2018, 28, 251-268.	0.9	21
33	Gene Profiling of Nucleus Basalis Tau Containing Neurons in Chronic Traumatic Encephalopathy: A Chronic Effects of Neurotrauma Consortium Study. Journal of Neurotrauma, 2018, 35, 1260-1271.	1.7	21
34	The Stress-Induced Transcription Factor NR4A1 Adjusts Mitochondrial Function and Synapse Number in Prefrontal Cortex. Journal of Neuroscience, 2018, 38, 1335-1350.	1.7	57
35	Pretangle pathology within cholinergic nucleus basalis neurons coincides with neurotrophic and neurotransmitter receptor gene dysregulation during the progression of Alzheimer's disease. Neurobiology of Disease, 2018, 117, 125-136.	2.1	37
36	Maternal choline supplementation in a mouse model of Down syndrome: Effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring. Neuroscience, 2017, 340, 501-514.	1.1	35

#	Article	IF	Citations
37	Locus coeruleus cellular and molecular pathology during the progression of Alzheimer's disease. Acta Neuropathologica Communications, 2017, 5, 8.	2.4	197
38	Enhanced exosome secretion in Down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities. Acta Neuropathologica Communications, 2017, 5, 65.	2.4	85
39	Deletion of Neurotrophin Signaling through the Glucocorticoid Receptor Pathway Causes Tau Neuropathology. Scientific Reports, 2016, 6, 37231.	1.6	27
40	P4â€086: TAU Modulates BDNF Expression and Mediates Aβâ€Induced Bdnf Downâ€Regulation in Animal and Cellular Models of Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P1045.	0.4	2
41	Molecular and cellular pathophysiology of preclinical Alzheimer's disease. Behavioural Brain Research, 2016, 311, 54-69.	1.2	99
42	Protein homeostasis gene dysregulation in pretangle-bearing nucleus basalis neurons during the progression of Alzheimer's disease. Neurobiology of Aging, 2016, 42, 80-90.	1.5	25
43	Brain-Wide Insulin Resistance, Tau Phosphorylation Changes, and Hippocampal Neprilysin and Amyloid- \hat{l}^2 Alterations in a Monkey Model of Type 1 Diabetes. Journal of Neuroscience, 2016, 36, 4248-4258.	1.7	66
44	Tau downregulates BDNF expression in animal and cellular models of Alzheimer's disease. Neurobiology of Aging, 2016, 48, 135-142.	1.5	63
45	Autophagy flux in CA1 neurons of Alzheimer hippocampus: Increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy, 2016, 12, 2467-2483.	4.3	252
46	Increased Expression of Readthrough Acetylcholinesterase Variants in the Brains of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2016, 53, 831-841.	1.2	26
47	Attentional function and basal forebrain cholinergic neuron morphology during aging in the Ts65Dn mouse model of Down syndrome. Brain Structure and Function, 2016, 221, 4337-4352.	1.2	19
48	Partial BACE1 reduction in a Down syndrome mouse model blocks Alzheimer-related endosomal anomalies and cholinergic neurodegeneration: role of APP-CTF. Neurobiology of Aging, 2016, 39, 90-98.	1.5	73
49	Neuronal ceroid lipofuscinosis with DNAJC5/CSPα mutation has PPT1 pathology and exhibit aberrant protein palmitoylation. Acta Neuropathologica, 2016, 131, 621-637.	3.9	71
50	Maternal Choline Supplementation: A Potential Prenatal Treatment for Down Syndrome and Alzheimer's Disease. Current Alzheimer Research, 2015, 13, 97-106.	0.7	47
51	Calorie Restriction Suppresses Age-Dependent Hippocampal Transcriptional Signatures. PLoS ONE, 2015, 10, e0133923.	1.1	62
52	Effects of Maternal Choline Supplementation on the Septohippocampal Cholinergic System in the Ts65Dn Mouse Model of Down Syndrome. Current Alzheimer Research, 2015, 13, 84-96.	0.7	27
53	Reduction of \hat{I}^2 -amyloid and \hat{I}^3 -secretase by calorie restriction in female Tg2576 mice. Neurobiology of Aging, 2015, 36, 1293-1302.	1.5	7 3
54	Expression profile analysis of hippocampal CA1 pyramidal neurons in aged Ts65Dn mice, a model of Down syndrome (DS) and Alzheimer's disease (AD). Brain Structure and Function, 2015, 220, 2983-2996.	1.2	32

#	Article	IF	Citations
55	Hippocampal Endosomal, Lysosomal, and Autophagic Dysregulation in Mild Cognitive Impairment. Journal of Neuropathology and Experimental Neurology, 2015, 74, 345-358.	0.9	48
56	Expression profile analysis of vulnerable CA1 pyramidal neurons in young–Middleâ€Aged Ts65Dn mice. Journal of Comparative Neurology, 2015, 523, 61-74.	0.9	22
57	Withdrawal of BDNF from hippocampal cultures leads to changes in genes involved in synaptic function. Developmental Neurobiology, 2015, 75, 173-192.	1.5	38
58	Glutamatergic Transmission Aberration: A Major Cause of Behavioral Deficits in a Murine Model of Down's Syndrome. Journal of Neuroscience, 2014, 34, 5099-5106.	1.7	45
59	Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice. Neurobiology of Disease, 2014, 70, 32-42.	2.1	75
60	Maternal choline supplementation differentially alters the basal forebrain cholinergic system of youngâ€adult Ts65Dn and disomic mice. Journal of Comparative Neurology, 2014, 522, 1390-1410.	0.9	35
61	Sex Differences in the Cholinergic Basal Forebrain in the <scp>Ts65Dn</scp> Mouse Model of <scp>D</scp> own Syndrome and <scp>A</scp> lzheimer's Disease. Brain Pathology, 2014, 24, 33-44.	2.1	51
62	Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology, 2014, 79, 172-179.	2.0	109
63	Maternal choline supplementation programs greater activity of the phosphatidylthanolamine N â€methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice. FASEB Journal, 2014, 28, 4312-4323.	0.2	21
64	Methods and Compositions for Amplification and Detection of microRNAs (miRNAs) and Noncoding RNAs (ncRNAs) Using the Signature Sequence Amplification Method (SSAM). Recent Advances in DNA & Gene Sequences, 2014, 8, 2-9.	0.7	5
65	Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiology of Disease, 2013, 58, 92-101.	2.1	100
66	Maternal choline supplementation programs offspring choline metabolism in a mouse model of Down syndrome. FASEB Journal, 2013, 27, 111.5.	0.2	0
67	Mechanisms Underlying Insulin Deficiency-Induced Acceleration of \hat{l}^2 -Amyloidosis in a Mouse Model of Alzheimer's Disease. PLoS ONE, 2012, 7, e32792.	1.1	126
68	Hippocampal ProNGF Signaling Pathways and \hat{I}^2 -Amyloid Levels in Mild Cognitive Impairment and Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2012, 71, 1018-1029.	0.9	89
69	Identification of CSPα Clients Reveals a Role in Dynamin 1 Regulation. Neuron, 2012, 74, 136-150.	3.8	78
70	Rac1b Increases with Progressive Tau Pathology within Cholinergic Nucleus Basalis Neurons in Alzheimer's Disease. American Journal of Pathology, 2012, 180, 526-540.	1.9	30
71	Plasma BDNF Levels Vary in Relation to Body Weight in Females. PLoS ONE, 2012, 7, e39358.	1.1	76
72	Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer's disease. Neurobiology of Disease, 2012, 45, 99-107.	2.1	81

#	Article	IF	CITATIONS
73	Microarray analysis of CA1 pyramidal neurons in a mouse model of tauopathy reveals progressive synaptic dysfunction. Neurobiology of Disease, 2012, 45, 751-762.	2.1	55
74	Expression profiling in neuropsychiatric disorders: Emphasis on glutamate receptors in bipolar disorder. Pharmacology Biochemistry and Behavior, 2012, 100, 705-711.	1.3	24
75	Mild cognitive impairment: pathology and mechanisms. Acta Neuropathologica, 2012, 123, 13-30.	3.9	189
76	Gene Expression Profiling Using the Terminal Continuation RNA Amplification Method for Small Input Samples in Neuroscience. Neuromethods, 2012, , 21-33.	0.2	0
77	Gender differences in neurotrophin and glutamate receptor expression in cholinergic nucleus basalis neurons during the progression of Alzheimer's disease. Journal of Chemical Neuroanatomy, 2011, 42, 111-117.	1.0	31
78	Upregulation of select rab GTPases in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. Journal of Chemical Neuroanatomy, 2011, 42, 102-110.	1.0	107
79	Vacuolar Pathology in the Median Eminence of the Hypothalamus After Hyponatremia. Journal of Neuropathology and Experimental Neurology, 2011, 70, 151-156.	0.9	2
80	A genotype resource for postmortem brain samples from the Autism Tissue Program. Autism Research, 2011, 4, 89-97.	2.1	23
81	Differential regulation of catechol-O-methyltransferase expression in a mouse model of aggression. Brain Structure and Function, 2011, 216, 347-356.	1.2	11
82	Regional Selectivity of rab5 and rab7 Protein Upregulation in Mild Cognitive Impairment and Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 22, 631-639.	1.2	110
83	Alterations in discrete glutamate receptor subunits in adult mouse dentate gyrus granule cells following perforant path transection. Analytical and Bioanalytical Chemistry, 2010, 397, 3349-3358.	1.9	10
84	Mitotic Figures in the Median Eminence of the Hypothalamus. Neurochemical Research, 2010, 35, 1743-1746.	1.6	2
85	Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17385-17390.	3.3	129
86	Alzheimer's-related endosome dysfunction in Down syndrome is Aβ-independent but requires APP and is reversed by BACE-1 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1630-1635.	3.3	256
87	Microarray Analysis of Hippocampal CA1 Neurons Implicates Early Endosomal Dysfunction During Alzheimer's Disease Progression. Biological Psychiatry, 2010, 68, 885-893.	0.7	229
88	Sex- and brain region-specific acceleration of \hat{l}^2 -amyloidogenesis following behavioral stress in a mouse model of Alzheimer's disease. Molecular Brain, 2010, 3, 34.	1.3	104
89	Cystatin C Rescues Degenerating Neurons in a Cystatin B-Knockout Mouse Model of Progressive Myoclonus Epilepsy. American Journal of Pathology, 2010, 177, 2256-2267.	1.9	51
90	Neuroprotective Role for Galanin in Alzheimer's Disease. Exs, 2010, 102, 143-162.	1.4	37

#	Article	IF	Citations
91	Cortical $\hat{l}\pm7$ Nicotinic Acetylcholine Receptor and \hat{l}^2 -Amyloid Levels in Early Alzheimer Disease. Archives of Neurology, 2009, 66, 646-51.	4.9	59
92	Target Identification for CNS Diseases by Transcriptional Profiling. Neuropsychopharmacology, 2009, 34, 18-54.	2.8	138
93	Systemic pathology in aged mouse models of Down's syndrome and Alzheimer's disease. Experimental and Molecular Pathology, 2009, 86, 18-22.	0.9	22
94	Ageâ€dependent dysregulation of brain amyloid precursor protein in the Ts65Dn Down syndrome mouse model. Journal of Neurochemistry, 2009, 110, 1818-1827.	2.1	76
95	Terminal continuation (TC) RNA amplification without second strand synthesis. Journal of Neuroscience Methods, 2009, 177, 381-385.	1.3	46
96	In vivo MRI identifies cholinergic circuitry deficits in a Down syndrome model. Neurobiology of Aging, 2009, 30, 1453-1465.	1.5	48
97	Decreased Brain-Derived Neurotrophic Factor Depends on Amyloid Aggregation State in Transgenic Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2009, 29, 9321-9329.	1.7	185
98	Galanin Fiber Hyperinnervation Preserves Neuroprotective Gene Expression in Cholinergic Basal Forebrain Neurons in Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 18, 885-896.	1.2	53
99	Different inflammatory reactions to vitamin D3 among the lateral, third and fourth ventricular choroid plexuses of the rat. Experimental and Molecular Pathology, 2008, 85, 117-121.	0.9	4
100	Cholinergic system during the progression of Alzheimer's disease: therapeutic implications. Expert Review of Neurotherapeutics, 2008, 8, 1703-1718.	1.4	493
101	Galanin Hyperinnervation Upregulates Choline Acetyltransferase Expression in Cholinergic Basal Forebrain Neurons in Alzheimer's Disease. Neurodegenerative Diseases, 2008, 5, 228-231.	0.8	33
102	Terminal Continuation (TC) RNA Amplification Enables Expression Profiling Using Minute RNA Input Obtained from Mouse Brain. International Journal of Molecular Sciences, 2008, 9, 2091-2104.	1.8	32
103	Transcriptional Profiling of Small Samples in the Central Nervous System. Methods in Molecular Biology, 2008, 439, 147-158.	0.4	40
104	T7 based amplification protocols. , 2008, , 81-94.		0
105	Cholinotrophic Molecular Substrates of Mild Cognitive Impairment in the Elderly. Current Alzheimer Research, 2007, 4, 340-350.	0.7	91
106	α7 Nicotinic Receptor Up-regulation in Cholinergic Basal Forebrain Neurons in Alzheimer Disease. Archives of Neurology, 2007, 64, 1771.	4.9	103
107	Neuronal gene expression profiling: uncovering the molecular biology of neurodegenerative disease. Progress in Brain Research, 2006, 158, 197-222.	0.9	42
108	Shift in the ratio of three-repeat tau and four-repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. Journal of Neurochemistry, 2006, 96, 1401-1408.	2.1	93

#	Article	IF	Citations
109	Down regulation of trk but not p75NTRgene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer's disease. Journal of Neurochemistry, 2006, 97, 475-487.	2.1	229
110	Single cell gene expression profiling in Alzheimer's disease. NeuroRx, 2006, 3, 302-318.	6.0	71
111	Functional genomic methodologies. Progress in Brain Research, 2006, 158, 15-40.	0.9	33
112	Galanin Fiber Hypertrophy within the Cholinergic Nucleus Basalis during the Progression of Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 2006, 21, 205-214.	0.7	40
113	Cell and Tissue Microdissection in Combination with Genomic and Proteomic Applications. , 2006, , 109-141.		17
114	Single cell gene expression profiling in Alzheimer's disease. Neurotherapeutics, 2006, 3, 302-318.	2.1	0
115	RNA amplification of bromodeoxyuridine labeled newborn neurons in the monkey hippocampus. Journal of Neuroscience Methods, 2005, 144, 197-201.	1.3	2
116	Expression profile analysis within the human hippocampus: Comparison of CA1 and CA3 pyramidal neurons. Journal of Comparative Neurology, 2005, 487, 107-118.	0.9	55
117	RNA amplification strategies for small sample populations. Methods, 2005, 37, 229-237.	1.9	74
118	Expression profiling in the aging brain: A perspective. Ageing Research Reviews, 2005, 4, 529-547.	5.0	27
119	Glutamatergic Neurotransmission Expression Profiling in the Mouse Hippocampus After Perforant-Path Transection. American Journal of Geriatric Psychiatry, 2005, 13, 1052-1061.	0.6	14
120	Glutamatergic neurotransmission expression profiling in the mouse hippocampus after perforant-path transection. American Journal of Geriatric Psychiatry, 2005, 13, 1052-61.	0.6	19
121	Amplification of RNA transcripts using terminal continuation. Laboratory Investigation, 2004, 84, 131-137.	1.7	80
122	Combined histochemical staining, RNA amplification, regional, and single cell cDNA analysis within the hippocampus. Laboratory Investigation, 2004, 84, 952-962.	1.7	56
123	Single-Cell Gene Expression Analysis: Implications for Neurodegenerative and Neuropsychiatric Disorders. Neurochemical Research, 2004, 29, 1053-1064.	1.6	84
124	Reduction of cortical TrkA but not p75NTR protein in early-stage Alzheimer's disease. Annals of Neurology, 2004, 56, 520-531.	2.8	181
125	Amplification of RNA transcripts using terminal continuation. Laboratory Investigation, 2004, 84, 131-137.	1.7	21
126	Expression profiling and pharmacotherapeutic development in the central nervous system. Alzheimer Disease and Associated Disorders, 2004, 18, 264-9.	0.6	17

#	Article	IF	Citations
127	Neuron-specific age-related decreases in dopamine receptor subtype mRNAs. Journal of Comparative Neurology, 2003, 456, 176-183.	0.9	91
128	Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. Journal of Chemical Neuroanatomy, 2003, 26, 233-242.	1.0	266
129	Galanin in Alzheimer Disease. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 137-156.	3.4	56
130	Axonal Transection in Adult Rat Brain Induces Transsynaptic Apoptosis and Persistent Atrophy of Target Neurons. Journal of Neurotrauma, 2002, 19, 99-109.	1.7	75
131	Gene Expression Profile for Schizophrenia. Archives of General Psychiatry, 2002, 59, 631.	13.8	236
132	RNA amplification in brain tissues. Neurochemical Research, 2002, 27, 981-992.	1.6	65
133	Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer's disease. Neurochemical Research, 2002, 27, 1035-1048.	1.6	141
134	Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Annals of Neurology, 2000, 48, 77-87.	2.8	310
135	Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons., 2000, 48, 77.		1
136	Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons., 2000, 48, 77.		4
137	Predominance of neuronal mRNAs in individual Alzheimer's disease senile plaques. Annals of Neurology, 1999, 45, 174-181.	2.8	121
138	Accumulation of Intracellular Amyloid-β Peptide (Aβ 1–40) in Mucopolysaccharidosis Brains. Journal of Neuropathology and Experimental Neurology, 1999, 58, 815-824.	0.9	52
139	Predominance of neuronal mRNAs in individual Alzheimer's disease senile plaques. Annals of Neurology, 1999, 45, 174-181.	2.8	4
140	Molecular Pathology of Alzheimer's Disease and Related Disorders. Cerebral Cortex, 1999, , 603-654.	0.6	23
141	Sequestration of RNA in Alzheimer's disease neurofibrillary tangles and senile plaques. Annals of Neurology, 1997, 41, 200-209.	2.8	153
142	Fimbriaâ€Fornix Transections Selectively Downâ€Regulate Subtypes of Glutamate Transporter and Glutamate Receptor Proteins in Septum and Hippocampus. Journal of Neurochemistry, 1996, 67, 1208-1216.	2.1	51
143	Non-NMDA glutamate receptors are present throughout the primate hypothalamus. Journal of Comparative Neurology, 1995, 353, 539-552.	0.9	21
144	Regional Deafferentiation Downâ€Regulates Subtypes of Glutamate Transporter Proteins. Journal of Neurochemistry, 1995, 65, 2800-2803.	2.1	122

#	Article	IF	CITATIONS
145	Noradrenergic innervation of vasopressin-and oxytocin-containing neurons in the hypothalamic paraventricular nucleus of the macaque monkey: Quantitative analysis using double-label immunohistochemistry and confocal laser microscopy. Journal of Comparative Neurology, 1994, 341, 476-491.	0.9	52
146	Noradrenergic innervation of the hypothalamus of rhesus monkeys: Distribution of dopamine-?-hydroxylase immunoreactive fibers and quantitative analysis of varicosities in the paraventricular nucleus. Journal of Comparative Neurology, 1993, 327, 597-611.	0.9	28
147	The noradrenergic innervation density of the monkey paraventricular nucleus is not altered by early social deprivation. Neuroscience Letters, 1993, 158, 130-134.	1.0	22