Kei Hasegawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3255845/publications.pdf

Version: 2024-02-01

		361413	395702
37	1,074 citations	20	33
papers	citations	h-index	g-index
38	38	38	1137
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Thermal properties of single-walled carbon nanotube forests with various volume fractions. International Journal of Heat and Mass Transfer, 2021, 171, 121076.	4.8	6
2	Dominant effect of the grain size of the MAPbl ₃ perovskite controlled by the surface roughness of TiO ₂ on the performance of perovskite solar cells. CrystEngComm, 2020, 22, 2718-2727.	2.6	47
3	A regionâ€specific environmental analysis of technology implementation of hydrogen energy in Japan based on life cycle assessment. Journal of Industrial Ecology, 2020, 24, 217-233.	5.5	11
4	Formation of Intermediate SiO2 nano-Layer As Effective Passivation at Si/TiO2 Interface By Zone Heating Recrystallization Toward Perovskite/Silicon Tandem Solar Cell. ECS Meeting Abstracts, 2020, MA2020-02, 1848-1848.	0.0	0
5	Estimation of Surface Coverages on H2/H2o Electrode in Reversible Operation of Solid Oxide Fuel Cell/ Electrolysis Cell Using Electrochemical Kinetics with Optimized Parameter By Genetic Algorithm. ECS Meeting Abstracts, 2020, MA2020-02, 2510-2510.	0.0	0
6	Techno-economic analysis on renewable energy via hydrogen, views from macro and micro scopes Energy Procedia, 2019, 158, 1949-1954.	1.8	1
7	Volumetric Discharge Capacity 1 A h cm ^{–3} Realized by Sulfur in Carbon Nanotube Sponge Cathodes. Journal of Physical Chemistry C, 2019, 123, 3951-3958.	3.1	13
8	Direct formation of continuous multilayer graphene films with controllable thickness on dielectric substrates. Thin Solid Films, 2019, 675, 136-142.	1.8	5
9	A region-specific analysis of technology implementation of hydrogen energy in Japan. International Journal of Hydrogen Energy, 2019, 44, 19434-19451.	7.1	11
10	Critical effect of nanometer-size surface roughness of a porous Si seed layer on the defect density of epitaxial Si films for solar cells by rapid vapor deposition. CrystEngComm, 2018, 20, 1774-1778.	2.6	5
11	Millimeter-tall carbon nanotube arrays grown on aluminum substrates. Carbon, 2018, 130, 834-842.	10.3	32
12	Flame-assisted chemical vapor deposition for continuous gas-phase synthesis of 1-nm-diameter single-wall carbon nanotubes. Carbon, 2018, 138, 1-7.	10.3	23
13	Nano-Scale Smoothing of Double Layer Porous Si Substrates for Detaching and Fabricating Low Cost, High Efficiency Monocrystalline Thin Film Si Solar Cell by Zone Heating Recrystallization. ECS Transactions, $2017, 75, 11-23$.	0.5	2
14	Catalyst nucleation and carbon nanotube growth from flame-synthesized Co-Al-O nanopowders at ten-second time scale. Carbon, 2017, 114, 31-38.	10.3	7
15	A-few-second synthesis of silicon nanoparticles by gas-evaporation and their self-supporting electrodes based on carbon nanotube matrix for lithium secondary battery anodes. Journal of Power Sources, 2017, 363, 450-459.	7.8	21
16	Ten-Second Epitaxy of Cu on Repeatedly Used Sapphire for Practical Production of High-Quality Graphene. ACS Omega, 2017, 2, 3354-3362.	3.5	2
17	Lithium ion batteries made of electrodes with 99Âwt% active materials and 1Âwt% carbon nanotubes without binder or metal foils. Journal of Power Sources, 2016, 321, 155-162.	7.8	33
18	50–100 ξm-thick pseudocapacitive electrodes of MnO ₂ nanoparticles uniformly electrodeposited in carbon nanotube papers. RSC Advances, 2016, 6, 41496-41505.	3.6	14

#	Article	IF	CITATIONS
19	Rapid vapour deposition and in situ melt crystallization for 1 min fabrication of 10 î¼m-thick crystalline silicon films with a lateral grain size of over 100 î¼m. CrystEngComm, 2016, 18, 3404-3410.	2.6	6
20	Carbon nanotube–silicon heterojunction solar cells with surface-textured Si and solution-processed carbon nanotube films. RSC Advances, 2016, 6, 93575-93581.	3.6	22
21	Important factors for effective use of carbon nanotube matrices in electrochemical capacitor hybrid electrodes without binding additives. RSC Advances, 2015, 5, 16101-16111.	3.6	12
22	Overcoming the quality–quantity tradeoff in dispersion and printing of carbon nanotubes by a repetitive dispersion–extraction process. Carbon, 2015, 91, 20-29.	10.3	25
23	One-minute deposition of micrometre-thick porous Si–Cu anodes with compositional gradients on Cu current collectors for lithium secondary batteries. Journal of Power Sources, 2015, 286, 540-550.	7.8	11
24	Denser and taller carbon nanotube arrays on Cu foils useable as thermal interface materials. Japanese Journal of Applied Physics, 2015, 54, 095102.	1.5	20
25	Direct synthesis of few- and multi-layer graphene films on dielectric substrates by "etching-precipitation―method. Carbon, 2015, 82, 254-263.	10.3	31
26	Carbon nanotube 3D current collectors for lightweight, high performance and low cost supercapacitor electrodes. RSC Advances, 2014, 4, 8230.	3.6	38
27	Over 99.6 wt%-pure, sub-millimeter-long carbon nanotubes realized by fluidized-bed with careful control of the catalyst and carbon feeds. Carbon, 2014, 80, 339-350.	10.3	42
28	Methane-Assisted Chemical Vapor Deposition Yielding Millimeter-Tall Single-Wall Carbon Nanotubes of Smaller Diameter. ACS Nano, 2013, 7, 6719-6728.	14.6	26
29	Fluidized-bed synthesis of sub-millimeter-long single walled carbon nanotube arrays. Carbon, 2012, 50, 1538-1545.	10.3	38
30	Millimeter-Tall Single-Walled Carbon Nanotubes Rapidly Grown with and without Water. ACS Nano, 2011, 5, 975-984.	14.6	118
31	Sub-millimeter-long carbon nanotubes repeatedly grown on and separated from ceramic beads in a single fluidized bed reactor. Carbon, 2011, 49, 1972-1979.	10.3	67
32	Moderating carbon supply and suppressing Ostwald ripening of catalyst particles to produce 4.5-mm-tall single-walled carbon nanotube forests. Carbon, 2011, 49, 4497-4504.	10.3	64
33	A Simple Combinatorial Method Aiding Research on Single-Walled Carbon Nanotube Growth on Substrates. Japanese Journal of Applied Physics, 2010, 49, 02BA02.	1.5	23
34	Real-Time Monitoring of Millimeter-Tall Vertically Aligned Single-Walled Carbon Nanotube Growth on Combinatorial Catalyst Library. Japanese Journal of Applied Physics, 2010, 49, 085104.	1.5	29
35	Diameter Increase in Millimeter-Tall Vertically Aligned Single-Walled Carbon Nanotubes during Growth. Applied Physics Express, 2010, 3, 045103.	2.4	35
36	Growth Window and Possible Mechanism of Millimeter-Thick Single-Walled Carbon Nanotube Forests. Journal of Nanoscience and Nanotechnology, 2008, 8, 6123-6128.	0.9	40

3

#	Article	IF	CITATIONS
37	Millimeter-Thick Single-Walled Carbon Nanotube Forests: Hidden Role of Catalyst Support. Japanese Journal of Applied Physics, 2007, 46, L399-L401.	1.5	194