Srinivasarao Arulananda Babu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3255432/publications.pdf

Version: 2024-02-01

91 papers

2,088 citations

201385 27 h-index 39 g-index

130 all docs

130 docs citations

130 times ranked

1488 citing authors

#	Article	IF	CITATIONS
1	Indium(III) chloride as an efficient, convenient catalyst for thioacetalization and its chemoselectivity. Tetrahedron Letters, 2001, 42, 359-362.	0.7	96
2	Auxiliary-Enabled Pd-Catalyzed Direct Arylation of Methylene C(sp ³)â€"H Bond of Cyclopropanes: Highly Diastereoselective Assembling of Di- and Trisubstituted Cyclopropanecarboxamides. Organic Letters, 2013, 15, 3238-3241.	2.4	88
3	Regio- and Stereoselective Pd-Catalyzed Direct Arylation of Unactivated sp ³ C(3)–H Bonds of Tetrahydrofuran and 1,4-Benzodioxane Systems. Journal of Organic Chemistry, 2015, 80, 2339-2355.	1.7	68
4	Esters as Acylating Reagent in a Friedelâ [^] Crafts Reaction: Indium Tribromide Catalyzed Acylation of Arenes Using Dimethylchlorosilane. Journal of Organic Chemistry, 2008, 73, 9465-9468.	1.7	66
5	Indium triflate: a mild Lewis acid catalyst for thioacetalization and transthioacetalization. Tetrahedron, 2002, 58, 7897-7901.	1.0	59
6	Direct Bis-Arylation of Cyclobutanecarboxamide via Double C–H Activation: An Auxiliary-Aided Diastereoselective Pd-Catalyzed Access to Trisubstituted Cyclobutane Scaffolds Having Three Contiguous Stereocenters and an All-cis Stereochemistry. Journal of Organic Chemistry, 2013, 78, 11911-11934.	1.7	57
7	First example of regiospecific intermolecular C–H insertion reactions of cyclic rhodium carbenoids: novel synthesis of 3-indol-3′-yloxindoles. Chemical Communications, 2002, , 824-825.	2.2	55
8	In- or In(I)-Employed Tailoring of the Stereogenic Centers in the Reformatsky-Type Reactions of Simple Ketones, α-Alkoxy Ketones, and β-Keto Esters. Journal of Organic Chemistry, 2005, 70, 10408-10419.	1.7	55
9	Magnetic nano Fe3O4 and CuFe2O4 as heterogeneous catalysts: A green method for the stereo- and regioselective reactions of epoxides with indoles/pyrroles. Catalysis Communications, 2012, 29, 118-121.	1.6	51
10	4-Amino-2,1,3-benzothiadiazole as a Removable Bidentate Directing Group for the Pd(II)-Catalyzed Arylation/Oxygenation of sp ² /sp ³ β-Câ€"H Bonds of Carboxamides. Journal of Organic Chemistry, 2016, 81, 12143-12168.	1.7	51
11	Catalytic Friedel–Crafts acylation: magnetic nanopowder CuFe2O4 as an efficient and magnetically separable catalyst. Tetrahedron Letters, 2013, 54, 1738-1742.	0.7	48
12	Pd(OAc) ₂ /AgOAc Catalytic System Based Bidentate Ligand Directed Regiocontrolled C–H Arylation and Alkylation of the Câ€3 Position of Thiophene―and Furanâ€2â€carboxamides. European Journal of Organic Chemistry, 2015, 2015, 3727-3742.	1,2	48
13	In(III)-Mediated Chemoselective Dehydrogenative Interaction of ClMe2SiH with Carboxylic Acids:Â Direct Chemo- and Regioselective Friedelâ´'Crafts Acylation of Aromatic Ethers. Organic Letters, 2007, 9, 405-408.	2.4	45
14	Tandem Cyclizationâ^'Cycloaddition Behavior of Rhodium Carbenoids with Carbonyl Compounds: Stereoselective Studies on the Construction of Novel Epoxy-Bridged Tetrahydropyranone Frameworks. Journal of Organic Chemistry, 2002, 67, 8019-8033.	1.7	43
15	Pd(II)-Catalyzed Arylation and Intramolecular Amidation of γ-C(sp ³)–H Bonds: En Route to Arylheteroarylmethane and Pyrrolidone Ring Annulated Furan/Thiophene Scaffolds. Journal of Organic Chemistry, 2017, 82, 7123-7150.	1.7	43
16	Pd(II)-Catalyzed, Picolinamide-Assisted, <i>Z</i> -Selective \hat{I}^3 -Arylation of Allylamines To Construct <i>Z</i> -Cinnamylamines. Journal of Organic Chemistry, 2017, 82, 6550-6567.	1.7	42
17	Pd(OAc) ₂ -Catalyzed, AgOAc-Promoted <i>Z</i> Selective Directed \hat{l}^2 -Arylation of Acrylamide Systems and Stereoselective Construction of <i>Z</i> Cinnamamide Scaffolds. Journal of Organic Chemistry, 2015, 80, 12379-12396.	1.7	41
18	Indium triflate: a mild and efficient Lewis acid catalyst for O–H insertion reactions of α-diazo ketones. Tetrahedron Letters, 2002, 43, 3133-3136.	0.7	38

#	Article	IF	CITATIONS
19	Diastereoselective Pd(II)-Catalyzed sp3 C–H Arylation Followed by Ring Opening of Cyclopropanecarboxamides: Construction of anti β-Acyloxy Carboxamide Derivatives. Journal of Organic Chemistry, 2016, 81, 8988-9005.	1.7	37
20	Pd(II)-Catalyzed Bidentate Directing Group-Aided Chemoselective Acetoxylation of Remote Îμ-C(sp ²)–H Bonds in Heteroaryl–Aryl-Based Biaryl Systems. Journal of Organic Chemistry, 2016, 81, 12197-12211.	1.7	37
21	In- or In(I)-Employed Diastereoselective Reformatsky-Type Reactions with Ketones: 1H NMR Investigations on the Active Species. Organic Letters, 2004, 6, 4475-4478.	2.4	36
22	High Chelation Control of Three Contiguous Stereogenic Centers in the Reformatsky Reactions of Indium Enolates with α-Hydroxy Ketones:  Unexpected Stereochemistry of Lactone Formation. Organic Letters, 2006, 8, 3029-3032.	2.4	36
23	Facile Synthesis of Oxatricyclic Systems with Various Ring Sizes and Substituents. Tetrahedron, 2000, 56, 6307-6318.	1.0	33
24	Novel regioselective synthesis of decahydrobenzocarbazoles using rhodium generated carbonyl ylides with indoles. Tetrahedron Letters, 2001, 42, 523-526.	0.7	32
25	Diastereoselective Production of Homoallylic Alcohols Bearing Quaternary Centers from Î ³ -Substituted Allylic Indiums and Ketones. Journal of Organic Chemistry, 2007, 72, 10264-10267.	1.7	32
26	Novel chemoselective 1,3-dipolar cycloaddition of rhodium generated carbonyl ylides with arylidenetetralones. Tetrahedron Letters, 2000, 41, 8839-8842.	0.7	28
27	Magnetic Nano Fe3O4 Catalyzed Solvent-Free Stereo- and Regioselective ÂAminolysis of Epoxides by Amines; a Green Method for the Synthesis of β-Amino Alcohols. Synlett, 2014, 25, 835-842.	1.0	28
28	Bidentate ligand 8-aminoquinoline-aided Pd-catalyzed diastereoselective \hat{l}^2 -arylation of the prochiral secondary sp3 Câ \in H bonds of 2-phenylbutanamides and related aliphatic carboxamides. Tetrahedron, 2015, 71, 8333-8349.	1.0	27
29	Microwave-Irradiated Transition-Metal Catalysis: Rapid and Efficient Dehydrative Carbon-Carbon Coupling of Alcohols with Active Methylenes. Synthesis, 2008, 2008, 1717-1724.	1.2	26
30	Recent Developments on the Synthesis and Applications of Natural Products-Inspired Spirooxindole Frameworks. Studies in Natural Products Chemistry, 2015, 46, 227-339.	0.8	26
31	Diastereoselective palladium-catalyzed functionalization of prochiral C(sp ³)â€"H bonds of aliphatic and alicyclic compounds. Chemical Communications, 2022, 58, 2612-2633.	2.2	24
32	Anomalous Reaction of Rh2(OAc)4-Generated Transient Carbonyl Ylides:Â Chemoselective Synthesis of Epoxy-Bridged Tetrahydropyranone, Oxepanone, Oxocinone, and Oxoninone Ring Systems. Journal of Organic Chemistry, 2007, 72, 1252-1262.	1.7	22
33	Advances in the Catalytic Reductive Amination of Furfural to Furfural Amine: The Momentous Role of Active Metal Sites. ChemSusChem, 2022, 15, .	3.6	22
34	A facile regioselective construction of spiro epoxy-bridged tetrahydropyranone frameworks. Tetrahedron, 2003, 59, 8117-8127.	1.0	21
35	Chelation-controlled diastereoselective construction of N-aryl-, N-acyl/tosylhydrazono \hat{l}^2 -substituted aspartate derivatives via Barbier-type reaction. Tetrahedron, 2013, 69, 6598-6611.	1.0	20
36	Regio- and diastereoselective construction of a new set of functionalized pyrrolidine, spiropyrrolidine and spiropyrrolizidine scaffolds appended with aryl- and heteroaryl moieties via the azomethine ylide cycloadditions. Tetrahedron, 2016, 72, 5578-5594.	1.0	20

#	Article	IF	CITATIONS
37	Indiumâ€Mediated Addition of γâ€Substituted Allylic Halides to <i>N</i> à€Aryl αâ€Imino Esters: Diastereoselective Production of β,β′â€Disubstituted αâ€Amino Acid Derivatives with Two Contiguous Stereocenters. European Journal of Organic Chemistry, 2012, 2012, 4395-4411.	1.2	19
38	Diastereoselective Construction of 3â€Aminooxindoles with Adjacent Stereocenters: Stereocontrolled Addition of γâ€Substituted Allylindiums to Isatin Ketimines. European Journal of Organic Chemistry, 2015, 2015, 4168-4189.	1.2	19
39	Palladium(II)â€Catalyzed Sp ³ /Sp ² <i>γ</i> ―and <i>δ</i> â€Câ€H Functionalization of Amines using 5â€Methylisoxazoleâ€3â€Carboxamide as Directing Group. Asian Journal of Organic Chemistry, 2019, 8, 877-886.	Aryl 1.3	19
40	Pd(II)â€Catalyzed, Bidentate Directing Groupâ€eided Alkylation of sp ³ γâ€Câ^'H Bonds: Access to 3â€Alkylated Thiophene/Furan and Benzothiophene/Benzofuran Motifs. Asian Journal of Organic Chemistry, 2020, 9, 1225-1233.	1.3	19
41	Rhodium generated carbonyl ylides with p -quinones: synthesis of oxa-bridged polycyclic systems. Tetrahedron, 2001, 57, 7009-7019.	1.0	18
42	Construction of Fused Cyclooctanoid Ring Systems via Seven-Membered Ring Carbonyl Ylides. Bulletin of the Chemical Society of Japan, 2002, 75, 801-811.	2.0	18
43	Palladium-Catalyzed Double Activation and Arylation of 2° and 3° C(sp3)–H Bonds of the Norbornane System: Formation of a C–C Bond at the Bridgehead Carbon and Bridgehead Quaternary Stereocenter. Synlett, 2014, 25, 1395-1402.	1.0	18
44	Glaser–Eglinton–Hay sp–sp coupling and macrocyclization: construction of a new class of polyether macrocycles having a 1,3-diyne unit. RSC Advances, 2014, 4, 18904-18916.	1.7	18
45	A regioselective 1,3-dipolar cycloaddition of 2-arylidene-1-tetralones with DPNI. Heteroatom Chemistry, 1999, 10, 331-336.	0.4	17
46	1,8-DIAZABICYCLO[5.4.0]UNDEC-7-ENE (DBU): A POWERFUL CATALYST FOR THE MICHAEL ADDITION REACTION OF β-KETOESTERS TO ACRYLATES AND ENONES. Synthetic Communications, 2002, 32, 3247-3254.	1.1	17
47	Synthesis of ortho-arylated/benzylated arylacetamide derivatives: $Pd(OAc)2$ -catalyzed bidentate ligand-aided arylation and benzylation of the \hat{I}^3 -CH bond of arylacetamides. Tetrahedron, 2016, 72, 5886-5897.	1.0	17
48	Palladium(II)-Promoted Directing Group-Enabled Regioselective C-H Arylation of The C-3 Position of 2-or 3-(Aminoalkyl)-Thiophene and Furfurylamine Derivatives. ChemistrySelect, 2016, 1, 1207-1219.	0.7	16
49	Novel Intermolecular [3 + 2] Cycloaddition Reaction of Carbonyl Ylides with Fulvenes: Entry into the Oxatetracyclo[6.5.1.01,6.09,13]tetradecene Ring System. Synlett, 2001, 2001, 1407-1410.	1.0	15
50	InCl3: A Mild Lewis Acid but Efficient Reagent in Organic Synthesis. Synlett, 2002, 2002, 0531-0532.	1.0	15
51	Assembling of medium/long chain-based \hat{l}^2 -arylated unnatural amino acid derivatives via the Pd(II)-catalyzed sp3 \hat{l}^2 -C-H arylation and a short route for rolipram-type derivatives. Tetrahedron, 2019, 75, 2447-2465.	1.0	15
52	Palladiumâ€Catalyzed 8â€Aminoquinolineâ€Aided sp 2 δâ€Câ^H Intramolecular Amidation/Annulation: A Route to Tricyclic Quinolones. Asian Journal of Organic Chemistry, 2019, 8, 899-908.	° _{1.3}	15
53	Anomalous behaviour of Rh(II)-generated carbonyl ylides: entry into functionalized spiro dioxa-bridged polycyclic frameworks. Tetrahedron Letters, 2002, 43, 3931-3934.	0.7	14
54	Highly stereoselective synthesis of vicinal diols by stannous chloride-mediated addition of hydroxyallylic stannanes to aldehydes. Tetrahedron Letters, 2009, 50, 3209-3212.	0.7	14

#	Article	IF	Citations
55	Unactivated Norbornenes in [3+2] Cycloadditions: Remarkably Stereo-controlled Entry into Norbornane-Fused Spirooxindolopyrrolidines, Spiro-1,3-indandionolylpyrrolidines, and Spirooxindolopyrrolizidines. Synlett, 2012, 23, 549-556.	1.0	14
56	An efficient and novel stereoselective protocol for the construction of syn-facially bridged norbornane frameworks. Tetrahedron Letters, 2002, 43, 5981-5984.	0.7	13
57	Construction of Functionalized Carbocycles Having Contiguous Tertiary Carbinol and All arbon Stereogenic Centers. European Journal of Organic Chemistry, 2013, 2013, 2362-2380.	1.2	13
58	Recent developments on the synthesis of functionalized carbohydrate/sugar derivatives involving the transition metalâ \in "catalyzed Câ \in "H activation/Câ \in "H functionalization. Studies in Natural Products Chemistry, 2021, , 311-399.	0.8	13
59	Stereoselective synthesis of vicinal diols by the stannous chloride-mediated reaction of unprotected hydroxyallylic stannane with carbonyl compounds. Tetrahedron, 2009, 65, 9569-9574.	1.0	12
60	Multicomponent reaction comprising one-pot installation of bidentate directing group and $Pd(II)$ -catalyzed direct \hat{I}^2 -arylation of $C(sp3)$ H bond of aliphatic and alicyclic carboxamides. Tetrahedron, 2016, 72, 5853-5863.	1.0	12
61	Pdâ€Catalyzed Diastereoselective Intramolecular Amide α â€Câ^'H Arylation in Sterically Hindered Monospirooxindole Motifs. Advanced Synthesis and Catalysis, 2019, 361, 2075-2093.	2.1	12
62	Construction of Racemic and Enantiopure Biaryl Unnatural Amino Acid Derivatives via Pd(II)â€Catalyzed Arylation of Unactivated Csp ³ â [^] H Bonds. European Journal of Organic Chemistry, 2021, 2021, 3641-3656.	1.2	12
63	Construction of carbazole-based unnatural amino acid scaffolds <i>via</i> Pd(<scp>ii</scp>)-catalyzed C(sp ³)–H functionalization. Organic and Biomolecular Chemistry, 2022, 20, 4391-4414.	1.5	11
64	Direct lactonization of \hat{l} -amino \hat{l}^3 , \hat{l} -unsaturated carboxylic acid esters via olefin activation: stereo- and regioselective production of homoserine lactone scaffolds having contiguous stereocenters. Tetrahedron, 2014, 70, 6402-6419.	1.0	10
65	RCM strategy-based entry into new crown ether/polyether macrocyclic systems derived from hydroxy benzaldehydes. Tetrahedron Letters, 2013, 54, 2255-2260.	0.7	9
66	Ring-closing metathesis reaction-based synthesis of new classes of polyether macrocyclic systems. Tetrahedron, 2015, 71, 7758-7781.	1.0	9
67	The Barbier-Type Allylation/Lactamization Cascade Route to Isoindolinones and the Heck-Type Annulation Route to Isoindolo[2,1- <i>a</i>]quinolines. ChemistrySelect, 2016, 1, 2952-2959.	0.7	9
68	EDC/DMAP-mediated direct condensation of dicarboxylic acids and diols: A concise synthesis of extra large polyether macrocyclic lactones and their X-ray structures. Tetrahedron Letters, 2016, 57, 5801-5807.	0.7	9
69	One-pot, solvent-free Pd(II)-catalyzed direct \hat{I}^2 -C-H arylation of carboxamides involving anhydrides as substrates via in situ installation of directing group. Tetrahedron, 2019, 75, 1246-1257.	1.0	9
70	Pd(II)-Catalyzed Directing-Group-Aided Câ€"H Arylation and Alkylation of Pyrene Core: Synthesis of C1,C2- and C1,C10-Disubstituted Pyrene Motifs. Synthesis, 2021, 53, 3307-3324.	1.2	9
71	Pd(II)-Catalyzed, Picolinamide-Aided γ-(sp2)-C–H Functionalization of Racemic and Enantiopure α-Methylbenzylamine and Phenylglycinol Scaffolds. Synthesis, 2022, 54, 4059-4094.	1.2	9
72	Expanding the Utility of Inexpensive Pyridineâ€ <i>N</i> àê⊙xide Directing Group for the Siteâ€selective sp ² /sp ³ <i>γ</i> â€Câ^'H Functionalization of Carboxamides. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	9

#	Article	IF	CITATIONS
73	Amberlyst-15 mediated decomposition of α-diazo carbonyl compounds. Tetrahedron Letters, 2001, 42, 5113-5116.	0.7	8
74	Regio- and Diastereoselective Cycloaddition of Azomethine Ylides with Benzylidenemalononitrile: Assembly of a New Set of Multisubstituted 4,4-Dicyanopyrrolidine-2-carboxylate and Nornicotine Scaffolds. Synlett, 2014, 25, 2629-2635.	1.0	8
75	Indium-assisted aluminium-based stereoselective allylation of prostereogenic $\hat{l}_{\pm},\hat{l}_{\pm}$ -disubstituted cycloalkanones and imines. RSC Advances, 2014, 4, 40199-40213.	1.7	8
76	Pd(II) atalyzed, Picolinamideâ€aided sp ² γâ^²Câ^²H Functionalization of Phenylglycinol: Access to γâ^²Câ^²H Arylated, Alkylated and Halogenated Phenylglycinol Scaffolds. Asian Journal of Organic Chemistry, 2021, 10, 180-185.	1.3	8
77	Indium-Employed One-Pot Sequential Double Nucleophilic Attack on a Symmetrical Dicarboxaldehyde. Synlett, 2004, 2004, 1223-1226.	1.0	7
78	Construction of Tertiary Amides: Ni ^{ll} â€Catalyzed <i>N</i> â€Arylation of Secondary Acyclic Amides (2â€Picolinamides) with Aryl Halides. Asian Journal of Organic Chemistry, 2017, 6, 269-273.	1.3	7
79	Exploitation of Intramolecular Glaser–Eglinton–Hay Macrocyclization for the Synthesis of New Classes of Optically Active Aza-Oxo-Thia Polyether Macrocycles from Amino Alcohol Building Blocks. Synlett, 2017, 28, 253-259.	1.0	7
80	Direct Lactamization of $\langle i \rangle \hat{l}^2 \langle i \rangle \hat{a} \in Arylated \langle i \rangle \hat{l}' \langle i \rangle \hat{a} \in Aminopentanoic Acid Carboxamides: En Route to 4\hat{a} \in aryl \hat{a} \in 2\hat{a} \in Piperidones, Piperidines, Antituberculosis Molecule Q203 (Telacebec) and its Analogues. Asian Journal of Organic Chemistry, 2022, 11, .$	1.3	6
81	A SIMPLE AND EFFICIENT REGIOSELECTIVE SYNTHESIS OF VARIOUS BICYCLO[n.m.0]ALKANEDIONES. Synthetic Communications, 2001, 31, 1205-1211.	1.1	5
82	An entry into new classes of optically active aza-oxo polyether macrocycles via the ring closing metathesis-based macrocyclization. Tetrahedron Letters, 2016, 57, 5690-5694.	0.7	5
83	Direct azidation of allylic/benzylic alcohols and ethers followed byÂthe click reaction: one-pot synthesis of 1,2,3-triazoles and 1,2,3-triazole moiety embedded macrocycles. Tetrahedron, 2015, 71, 7026-7045.	1.0	4
84	Zinc-Mediated Allylation Followed by Lactonization of Dialkyl 2-(3-Oxo-1,3-diarylpropyl)malonates: Construction of \hat{l} -Lactones with Multiple Stereocenters. Synlett, 2015, 26, 2121-2126.	1.0	4
85	Conversion of 2,3â€Dihydrobenzo[b][1,4]dioxineâ€2â€carboxamides to 3â€Oxoquinolinâ€2(1 H)â€ones via Ringâ€Opening and Formal 6â€endo â€trig Cyclizationâ€nvolved Heck Reactions. Asian Journal of Organic Chemistry, 2020, 9, 829-839.	1.3	3
86	Synthesis of \hat{l}^2 -cyanoalanine and enantiomerically enriched aspartate derivatives via the Zn- or In-mediated nucleophilic addition to \hat{l}_{\pm} -imino esters. Tetrahedron, 2020, 76, 131217.	1.0	3
87	Synthesis of 1â€Naphtholâ€based Unsymmetrical Triarylmethanes: Heckâ€type Desulfitative Reaction of Arylsulfonyl Chlorides with Tetraloneâ€derived Chalcones. Asian Journal of Organic Chemistry, 2021, 10, 576-581.	1.3	2
88	Structureâ€Property Correlation of C10â€(H)â€Arylatedâ€Nâ€(pyrenâ€1â€yl)â€picolinamide Regioisomers towar 2+ and Fe 3+ Sensing. ChemistrySelect, 2021, 6, 12022-12031.	ds Cu	2
89	Indium Triflate: A Mild Lewis Acid Catalyst for Thioacetalization and Transthioacetalization ChemInform, 2003, 34, no.	0.1	0
90	1,8-Diazabicyclo [5.4.0] undec-7-ene (DBU): A Powerful Catalyst for the Michael Addition Reaction of \hat{l}^2 -Ketoesters to Acrylates and Enones ChemInform, 2003, 34, no.	0.1	0

#	Article	IF	CITATIONS
91	Indium-Employed One-Pot Sequential Double Nucleophilic Attack on a Symmetrical Dicarboxaldehyde ChemInform, 2004, 35, no.	0.1	O