
Chuanchun Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/325522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZBTB7A, a miR-144-3p targeted gene, accelerates bladder cancer progression via downregulating HIC1 expression. Cancer Cell International, 2022, 22, 179.	4.1	4
2	ITIH5, a p53-responsive gene, inhibits the growth and metastasis of melanoma cells by downregulating the transcriptional activity of KLF4. Cell Death and Disease, 2021, 12, 438.	6.3	13
3	Sialyltransferase7A promotes angiotensin II-induced cardiomyocyte hypertrophy via HIF-1α-TAK1 signalling pathway. Cardiovascular Research, 2020, 116, 114-126.	3.8	10
4	The deubiquitinase USP10 regulates KLF4 stability and suppresses lung tumorigenesis. Cell Death and Differentiation, 2020, 27, 1747-1764.	11.2	61
5	The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nature Communications, 2019, 10, 2914.	12.8	73
6	Reciprocal regulation of integrin \hat{l}^2 4 and KLF4 promotes gliomagenesis through maintaining cancer stem cell traits. Journal of Experimental and Clinical Cancer Research, 2019, 38, 23.	8.6	32
7	ZBTB7A, a miR-663a target gene, protects osteosarcoma from endoplasmic reticulum stress-induced apoptosis by suppressing LncRNA GAS5 expression. Cancer Letters, 2019, 448, 105-116.	7.2	41
8	MiR-3196, a p53-responsive microRNA, functions as a tumor suppressor in hepatocellular carcinoma by targeting FOXP4. American Journal of Cancer Research, 2019, 9, 2665-2678.	1.4	3
9	Regulation of Cancer Stem Cell Self-Renewal by HOXB9 Antagonizes Endoplasmic Reticulum Stress-Induced Melanoma Cell Apoptosis via the miR-765–FOXA2 Axis. Journal of Investigative Dermatology, 2018, 138, 1609-1619.	0.7	36
10	KLF4, a miR-32-5p targeted gene, promotes cisplatin-induced apoptosis by upregulating BIK expression in prostate cancer. Cell Communication and Signaling, 2018, 16, 53.	6.5	41
11	Regulation of the adaptation to ER stress by KLF4 facilitates melanoma cell metastasis via upregulating NUCB2 expression. Journal of Experimental and Clinical Cancer Research, 2018, 37, 176.	8.6	25
12	KLF4 suppresses the migration of hepatocellular carcinoma by transcriptionally upregulating monoglyceride lipase. American Journal of Cancer Research, 2018, 8, 1019-1029.	1.4	15
13	MiR-1281, a p53-responsive microRNA, impairs the survival of human osteosarcoma cells upon ER stress via targeting USP39. American Journal of Cancer Research, 2018, 8, 1764-1774.	1.4	14
14	Long non-coding RNA AC023115.3 suppresses chemoresistance of glioblastoma by reducing autophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1393-1404.	4.1	57
15	LncRNAAC132217.4, a KLF8-regulated long non-coding RNA, facilitates oral squamous cell carcinoma metastasis by upregulating IGF2 expression. Cancer Letters, 2017, 407, 45-56.	7.2	45
16	ZBTB7A Enhances Osteosarcoma Chemoresistance by Transcriptionally Repressing IncRNALINC00473-IL24 Activity. Neoplasia, 2017, 19, 908-918.	5.3	52
17	USP21 deubiquitylates Nanog to regulate protein stability and stem cell pluripotency. Signal Transduction and Targeted Therapy, 2016, 1, 16024.	17.1	35
18	IDH1, a CHOP and C/EBPβ-responsive gene under ER stress, sensitizes human melanoma cells to hypoxia-induced apoptosis. Cancer Letters, 2015, 365, 201-210.	7.2	43

Chuanchun Han

#	Article	IF	CITATIONS
19	Structural insights on mouse l -threonine dehydrogenase: A regulatory role of Arg180 in catalysis. Journal of Structural Biology, 2015, 192, 510-518.	2.8	9
20	Sialyltransferase7A, a Klf4-responsive gene, promotes cardiomyocyte apoptosis during myocardial infarction. Basic Research in Cardiology, 2015, 110, 28.	5.9	26
21	Endoplasmic reticulum stress inhibits cell cycle progression via induction of p27 in melanoma cells. Cellular Signalling, 2013, 25, 144-149.	3.6	55
22	Regulation of <scp>L</scp> -Threonine Dehydrogenase in Somatic Cell Reprogramming. Stem Cells, 2013, 31, 953-965.	3.2	64