Matteo Grattieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3255178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The periodic table of photosynthetic purple non-sulfur bacteria: intact cell-metal ions interactions. Photochemical and Photobiological Sciences, 2022, 21, 101-111.	2.9	7
2	Photobioelectrochemistry of intact photosynthetic bacteria: Advances and future outlook. Current Opinion in Electrochemistry, 2022, 34, 101018.	4.8	10
3	Bio-Inspired Redox-Adhesive Polydopamine Matrix for Intact Bacteria Biohybrid Photoanodes. ACS Applied Materials & Interfaces, 2022, 14, 26631-26641.	8.0	14
4	Intact Photosynthetic Bacteria-Based Electrochemical Biosensors. ECS Meeting Abstracts, 2022, MA2022-01, 1860-1860.	0.0	0
5	Unveiling complete lactate oxidation through a hybrid catalytic cascade. Electrochimica Acta, 2021, 376, 138044.	5.2	9
6	Recent trends and advances in microbial electrochemical sensing technologies: An overview. Current Opinion in Electrochemistry, 2021, 30, 100762.	4.8	31
7	An engineered, non-diazotrophic cyanobacterium and its application in bioelectrochemical nitrogen fixation. Cell Reports Physical Science, 2021, 2, 100444.	5.6	19
8	An Unbranched, Hybrid Conductive-Redox Polymer for Interfacing Intact Chloroplasts and Electrode Surfaces during Photobioelectrocatalysis. ECS Meeting Abstracts, 2021, MA2021-01, 1255-1255.	0.0	0
9	Unbranched Hybrid Conducting Redox Polymers for Intact Chloroplast-Based Photobioelectrocatalysis. Langmuir, 2021, 37, 7821-7833.	3.5	15
10	Rational design of artificial redox-mediating systems toward upgrading photobioelectrocatalysis. Photochemical and Photobiological Sciences, 2021, 20, 1333-1356.	2.9	29
11	Halotolerance of Rhodobacter sphaeroides for saline and hypersaline wastewater bioremediation. , 2021, , .		3
12	(Invited) Targeting Sustainability in Bioelectrochemical Systems for Water Quality Monitoring. ECS Meeting Abstracts, 2021, MA2021-02, 1517-1517.	0.0	0
13	Purple Bacteria and 3D Redox Hydrogels for Bioinspired Photoâ€bioelectrocatalysis. ChemSusChem, 2020, 13, 230-237.	6.8	28
14	Modified biochar for phosphate adsorption in environmentally relevant conditions. Chemical Engineering Journal, 2020, 380, 122375.	12.7	115
15	Chloroplast biosolar cell and self-powered herbicide monitoring. Chemical Communications, 2020, 56, 13161-13164.	4.1	11
16	Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chemical Reviews, 2020, 120, 12903-12993.	47.7	227
17	Draft Genome Sequence of Salinivibrio sp. Strain EAGSL, a Biotechnologically Relevant Halophilic Microorganism. Microbiology Resource Announcements, 2020, 9, .	0.6	3
18	Advancing the fundamental understanding and practical applications of photo-bioelectrocatalysis. Chemical Communications, 2020, 56, 8553-8568.	4.1	31

MATTEO GRATTIERI

#	Article	IF	CITATIONS
19	Purple bacteria photo-bioelectrochemistry: enthralling challenges and opportunities. Photochemical and Photobiological Sciences, 2020, 19, 424-435.	2.9	36
20	Unveiling salinity effects on photo-bioelectrocatalysis through combination of bioinformatics and electrochemistry. Electrochimica Acta, 2020, 337, 135731.	5.2	16
21	Editors' Choice—Review—Exploration of Computational Approaches for Understanding Microbial Electrochemical Systems: Opportunities and Future Directions. Journal of the Electrochemical Society, 2020, 167, 065502.	2.9	17
22	Online self-powered Cr(VI) monitoring with autochthonous Pseudomonas and a bio-inspired redox polymer. Analytical and Bioanalytical Chemistry, 2020, 412, 6449-6457.	3.7	15
23	Tuning purple bacteria salt-tolerance for photobioelectrochemical systems in saline environments. Faraday Discussions, 2019, 215, 15-25.	3.2	23
24	Transitioning from batch to flow hypersaline microbial fuel cells. Electrochimica Acta, 2019, 317, 494-501.	5.2	10
25	Microbial amperometric biosensor for online herbicide detection: Photocurrent inhibition of Anabaena variabilis. Electrochimica Acta, 2019, 302, 102-108.	5.2	61
26	Understanding Biophotocurrent Generation in Photosynthetic Purple Bacteria. ACS Catalysis, 2019, 9, 867-873.	11.2	56
27	Extracellular Electron Transfer Mechanisms in a Moderately Halophilic Bacterium from the Great Salt Lake for High Salinity Heavy Metal Biosensing. ECS Meeting Abstracts, 2019, , .	0.0	Ο
28	Unveiling Purple Bacteria Salt Tolerance Mechanisms for Environmental Monitoring in Photo-Bioelectrochemical Systems. ECS Meeting Abstracts, 2019, , .	0.0	0
29	Sustainable Bioelectrosynthesis of the Bioplastic Polyhydroxybutyrate: Overcoming Substrate Requirement for NADH Regeneration. ACS Sustainable Chemistry and Engineering, 2018, 6, 4909-4915.	6.7	36
30	Hypersaline Microbial Self-Powered Biosensor with Increased Sensitivity. Journal of the Electrochemical Society, 2018, 165, H251-H254.	2.9	14
31	Decoupling energy and power. Nature Energy, 2018, 3, 8-9.	39.5	8
32	Alginateâ€Encapsulated Bacteria for the Treatment of Hypersaline Solutions in Microbial Fuel Cells. ChemBioChem, 2018, 19, 1162-1169.	2.6	26
33	Fast and efficient removal of chromium (VI) anionic species by a reusable chitosan-modified multi-walled carbon nanotube composite. Chemical Engineering Journal, 2018, 339, 259-267.	12.7	133
34	Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives. Bioelectrochemistry, 2018, 120, 127-137.	4.6	78
35	Self-Powered Biosensors. ACS Sensors, 2018, 3, 44-53.	7.8	229
36	Lag Time Spectrophotometric Assay for Studying Transport Limitation in Immobilized Enzymes. ACS Omega, 2018, 3, 11945-11949.	3.5	1

MATTEO GRATTIERI

#	Article	IF	CITATIONS
37	A sustainable adsorbent for phosphate removal: modifying multi-walled carbon nanotubes with chitosan. Journal of Materials Science, 2018, 53, 12641-12649.	3.7	73
38	Photobioelectrocatalysis of Intact Chloroplasts for Solar Energy Conversion. ACS Catalysis, 2017, 7, 2257-2265.	11.2	60
39	Sustainable Hypersaline Microbial Fuel Cells: Inexpensive Recyclable Polymer Supports for Carbon Nanotube Conductive Paint Anodes. ChemSusChem, 2017, 10, 2053-2058.	6.8	29
40	Halotolerant extremophile bacteria from the Great Salt Lake for recycling pollutants in microbial fuel cells. Journal of Power Sources, 2017, 356, 310-318.	7.8	46
41	Enhanced Bioelectrocatalysis of <i>Shewanella oneidensis</i> MR-1 by a Naphthoquinone Redox Polymer. ACS Energy Letters, 2017, 2, 1947-1951.	17.4	32
42	Investigating extracellular electron transfer of Rikenella microfusus: a recurring bacterium in mixed-species biofilms. Sustainable Energy and Fuels, 2017, 1, 1568-1572.	4.9	7
43	Bioelectrochemical Systems as a Multipurpose Biosensing Tool: Present Perspective and Future Outlook. ChemElectroChem, 2017, 4, 834-842.	3.4	56
44	Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies. Journal of Power Sources, 2017, 340, 80-88.	7.8	83
45	Photobioelectrochemistry of Intact Chloroplasts for Solar Energy Conversion. ECS Meeting Abstracts, 2017, , .	0.0	0
46	Extracellular Electron Transfer in Mixed Species Biofilms: The Role of Rikenella Microfusus. ECS Meeting Abstracts, 2017, , .	0.0	0
47	Facilitated Electron Hopping in Nanolayer Oxygenâ€Insensitive Glucose Biosensor for Application in a Complex Matrix. ChemElectroChem, 2016, 3, 1884-1889.	3.4	10
48	Revisiting direct electron transfer in nanostructured carbon laccase oxygen cathodes. Bioelectrochemistry, 2016, 109, 101-107.	4.6	20
49	PTFE effect on the electrocatalysis of the oxygen reduction reaction in membraneless microbial fuel cells. Bioelectrochemistry, 2015, 106, 240-247.	4.6	38
50	Non-Competitive Reversible Inhibition of Laccase by H2O2in Osmium Mediated Layer-By-Layer Multilayer O2Biocathodes. Journal of the Electrochemical Society, 2015, 162, G82-G86.	2.9	11
51	Enzymatic Oxygen Microsensor Based on Bilirubin Oxidase Applied to Microbial Fuel Cells Analysis. Electroanalysis, 2015, 27, 327-335.	2.9	17
52	Electrochemical Behavior of Stainless Steel Anodes in Membraneless Microbial Fuel Cells. Journal of the Electrochemical Society, 2014, 161, H62-H67.	2.9	46
53	Performance explorations of single chamber microbial fuel cells by using various microelectrodes applied to biocathodes. International Journal of Hydrogen Energy, 2014, 39, 21837-21846.	7.1	39
54	Surface Modification of Microbial Fuel Cells Anodes: Approaches to Practical Design. Electrochimica Acta, 2014, 134, 116-126.	5.2	89

#	Article	IF	CITATIONS
55	Parameters characterization and optimization of activated carbon (AC) cathodes for microbial fuel cell application. Bioresource Technology, 2014, 163, 54-63.	9.6	102