Biraja C Dash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3255157/publications.pdf

Version: 2024-02-01

35 papers 2,055 citations

361045 20 h-index 414034 32 g-index

40 all docs

40 docs citations

40 times ranked

3093 citing authors

#	Article	IF	CITATIONS
1	Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science, 2018, 362, .	6.0	318
2	Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Progress in Polymer Science, 2008, 33, 998-1012.	11.8	316
3	Nonmulberry silk biopolymers. Biopolymers, 2012, 97, 455-467.	1.2	174
4	The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility. Biomaterials, 2010, 31, 8188-8197.	5.7	149
5	The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Research and Therapy, 2019, 10, 87.	2.4	117
6	Silk gland sericin protein membranes: Fabrication and characterization for potential biotechnological applications. Journal of Biotechnology, 2009, 144, 321-329.	1.9	112
7	Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials, 2016, 102, 120-129.	5.7	111
8	Single cell transcriptomic landscape of diabetic foot ulcers. Nature Communications, 2022, 13, 181.	5.8	111
9	Stem Cells and Engineered Scaffolds for Regenerative Wound Healing. Bioengineering, 2018, 5, 23.	1.6	92
10	Tunable elastin-like polypeptide hollow sphere as a high payload and controlled delivery gene depot. Journal of Controlled Release, 2011, 152, 382-392.	4.8	79
11	Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells. Stem Cell Reports, 2016, 7, 19-28.	2.3	75
12	Induced pluripotent stem cell-derived vascular smooth muscle cells: methods and application. Biochemical Journal, 2015, 465, 185-194.	1.7	53
13	An injectable elastin-based gene delivery platform for dose-dependent modulation of angiogenesis and inflammation for critical limb ischemia. Biomaterials, 2015, 65, 126-139.	5.7	53
14	Induced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing. Regenerative Medicine, 2020, 15, 1277-1293.	0.8	51
15	Mannosylated Polyethyleneimine–Hyaluronan Nanohybrids for Targeted Gene Delivery to Macrophage-Like Cell Lines. Bioconjugate Chemistry, 2012, 23, 1138-1148.	1.8	38
16	A Dense Fibrillar Collagen Scaffold Differentially Modulates Secretory Function of iPSC-Derived Vascular Smooth Muscle Cells to Promote Wound Healing. Cells, 2020, 9, 966.	1.8	25
17	Incisional Negative Pressure Wound Therapy Augments Perfusion and Improves Wound Healing in a Swine Model Pilot Study. Annals of Plastic Surgery, 2019, 82, S222-S227.	0.5	24
18	Controlled Release of Plasmid DNA from Hyaluronan Nanoparticles. Current Drug Delivery, 2011, 8, 354-362.	0.8	23

#	Article	IF	Citations
19	Self-assembled elastin-like polypeptide fusion protein coacervates as competitive inhibitors of advanced glycation end-products enhance diabetic wound healing. Journal of Controlled Release, 2021, 333, 176-187.	4.8	23
20	Emulsion cross-linked chitosan/nanohydroxyapatite microspheres for controlled release of alendronate. Journal of Materials Science: Materials in Medicine, 2014, 25, 2649-2658.	1.7	22
21	Self-Assembled Nanomaterials for Chronic Skin Wound Healing. Advances in Wound Care, 2021, 10, 221-233.	2.6	18
22	An in situ collagenâ€HA hydrogel system promotes survival and preserves the proangiogenic secretion of hiPSCâ€derived vascular smooth muscle cells. Biotechnology and Bioengineering, 2020, 117, 3912-3923.	1.7	17
23	Impact of Complete Spinal Cord Injury on Healing of Skin Ulcers in Mouse Models. Journal of Neurotrauma, 2018, 35, 815-824.	1.7	10
24	Human iPSC-Derived Vascular Smooth Muscle Cells in a Fibronectin Functionalized Collagen Hydrogel Augment Endothelial Cell Morphogenesis. Bioengineering, 2021, 8, 223.	1.6	8
25	Unlocking the Potential of Induced Pluripotent Stem Cells for Wound Healing: The Next Frontier of Regenerative Medicine. Advances in Wound Care, 2022, 11, 622-638.	2.6	6
26	Targeting Fibrotic Signaling. Annals of Plastic Surgery, 2019, 83, e92-e95.	0.5	5
27	Integrin \hat{l}^2 3 targeting biomaterial preferentially promotes secretion of bFGF and viability of iPSC-derived vascular smooth muscle cells. Biomaterials Science, 2021, 9, 5319-5329.	2.6	4
28	Multifunctional Elastin-Like Polypeptide Fusion Protein Coacervates Inhibit Receptor-Mediated Proinflammatory Signals and Promote Angiogenesis in Mouse Diabetic Wounds. Advances in Wound Care, 2023, 12, 241-255.	2.6	4
29	Composite scaffolds for skin repair and regeneration. , 2019, , 193-223.		3
30	Mouse Model of Pressure Ulcers After Spinal Cord Injury. Journal of Visualized Experiments, 2019, , .	0.2	3
31	Stem Cell Therapy for Thromboangiitis Obliterans (Buerger's Disease). Processes, 2020, 8, 1408.	1.3	2
32	Generation and Encapsulation of Human iPSC-Derived Vascular Smooth Muscle Cells for Proangiogenic Therapy. Methods in Molecular Biology, 2021, , 1.	0.4	2
33	Induced Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells for Vascular Regeneration. , 2021, , 199-219.		1
34	Human <scp>iPSCâ€Vascular</scp> smooth muscle cell spheroids demonstrate sizeâ€dependent alterations in cellular viability and secretory function. Journal of Biomedical Materials Research - Part A, 2022, 110, 1813-1823.	2.1	1
35	Induced Pluripotent Stem Cell Derived Smooth Muscle Cells Are Superior to Mesenchymal Stem Cells at Accelerating Diabetic Wound Healing. Journal of the American College of Surgeons, 2019, 229, S331.	0.2	0