Antonio Chalfun-Junior

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3254964/publications.pdf

Version: 2024-02-01

		567281	477307
58	1,037	15	29
papers	citations	h-index	g-index
62	62	62	1.622
62	62	62	1622
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Understanding the genetic regulation of anthocyanin biosynthesis in plants – Tools for breeding purple varieties of fruits and vegetables. Phytochemistry, 2018, 153, 11-27.	2.9	140
2	ASYMMETRIC LEAVES2-LIKE1gene, a member of the AS2/LOB family, controls proximal?distal patterning in Arabidopsis petals. Plant Molecular Biology, 2005, 57, 559-575.	3.9	99
3	Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Science, 2014, 221-222, 59-68.	3.6	91
4	Global analysis of the MATE gene family of metabolite transporters in tomato. BMC Plant Biology, 2017, 17, 185.	3.6	64
5	Molecular epidemiology of Streptococcus agalactiae isolated from mastitis in Brazilian dairy herds. Brazilian Journal of Microbiology, 2017, 48, 551-559.	2.0	43
6	Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis. Frontiers in Plant Science, 2014, 5, 221.	3.6	40
7	Subspecies and diet affect the expression of genes involved in lipid metabolism and chemical composition of muscle in beef cattle. Meat Science, 2017, 133, 110-118.	5.5	38
8	Low frequency of T-DNA based activation tagging in Arabidopsis is correlated with methylation of CaMV 35S enhancer sequences. FEBS Letters, 2003, 555, 459-463.	2.8	29
9	Expression of genes involved in lipid metabolism in the muscle of beef cattle fed soybean or rumen-protected fat, with or without monensin supplementation1. Journal of Animal Science, 2014, 92, 5426-5436.	0.5	29
10	Strategies to increase zinc deficiency tolerance and homeostasis in plants. Brazilian Journal of Plant Physiology, 2012, 24, 3-8.	0.5	24
11	New Insights on Coffea miRNAs: Features and Evolutionary Conservation. Applied Biochemistry and Biotechnology, 2015, 177, 879-908.	2.9	24
12	Validation of reference genes for qPCR analysis of Coffea arabica L. somatic embryogenesis-related tissues. Plant Cell, Tissue and Organ Culture, 2017, 128, 663-678.	2.3	22
13	In Silico and Quantitative Analyses of MADS-Box Genes in Coffea arabica. Plant Molecular Biology Reporter, 2010, 28, 460-472.	1.8	21
14	New insights into tomato microRNAs. Scientific Reports, 2018, 8, 16069.	3.3	21
15	Early histological, hormonal, and molecular changes during pineapple (Ananas comosus (L.) Merrill) artificial flowering induction. Journal of Plant Physiology, 2017, 209, 11-19.	3.5	19
16	A panel of the most suitable reference genes for RT-qPCR expression studies of coffee: screening their stability under different conditions. Tree Genetics and Genomes, 2017, 13, 1.	1.6	18
17	In Silico and Quantitative Analyses of the Putative FLC-like Homologue in Coffee (Coffea arabica L.). Plant Molecular Biology Reporter, 2012, 30, 29-35.	1.8	17
18	Anatomic and physiological modifications in seedlings of Coffea arabica cultivar Siriema under drought conditions. Ciencia E Agrotecnologia, 2014, 38, 25-33.	1.5	17

#	Article	IF	CITATIONS
19	A proposed model for the flowering signaling pathway of sugarcane under photoperiodic control. Genetics and Molecular Research, 2013, 12, 1347-1359.	0.2	16
20	A genome-wide analysis of the RNA-guided silencing pathway in coffee reveals insights into its regulatory mechanisms. PLoS ONE, 2017, 12, e0176333.	2.5	16
21	Zinc supply impacts on the relative expression of a metallothionein-like gene in Coffea arabica plants. Plant and Soil, 2017, 411, 179-191.	3.7	15
22	Elevated Temperatures Impose Transcriptional Constraints and Elicit Intraspecific Differences Between Coffee Genotypes. Frontiers in Plant Science, 2020, 11, 1113.	3.6	15
23	Identification and expression analysis of ethylene biosynthesis and signaling genes provides insights into the early and late coffee cultivars ripening pathway. Planta, 2014, 239, 951-963.	3.2	14
24	Effects of 60 Hz sinusoidal magnetic field on in vitro establishment, multiplication, and acclimatization phases of <i>Coffea arabica</i> seedlings. Bioelectromagnetics, 2014, 35, 414-425.	1.6	14
25	Transcriptome analyses suggest that changes in fungal endophyte lifestyle could be involved in grapevine bud necrosis. Scientific Reports, 2020, 10, 9514.	3.3	14
26	Physiological and molecular analyses of early and late Coffea arabica cultivars at different stages of fruit ripening. Acta Physiologiae Plantarum, 2013, 35, 3091-3098.	2.1	13
27	Efeito do ácido indolbutÃrico no enraizamento de estacas de ramos semilenhosos de pessegueiro. Pesquisa Agropecuaria Brasileira, 2002, 37, 939-944.	0.9	12
28	Drought and re-watering modify ethylene production and sensitivity, and are associated with coffee anthesis. Environmental and Experimental Botany, 2021, 181, 104289.	4.2	11
29	An overview of the endogenous and environmental factors related to the <i>Coffea arabica</i> flowering process. Beverage Plant Research, 2021, 1, 1-16.	1.9	11
30	Divergência genética entre cultivares de gérbera utilizando marcadores RAPD. Ciencia Rural, 2009, 39, 2435-2440.	0.5	9
31	Insights into the Positive Effect of Pyraclostrobin on Sugarcane Productivity. Agronomy, 2018, 8, 122.	3.0	9
32	Nitrogen sources and CO2 concentration synergistically affect the growth and metabolism of tobacco plants. Photosynthesis Research, 2020, 144, 327-339.	2.9	8
33	Sexual compatibility in cacao clones drives arrangements in the field leading to high yield. Scientia Horticulturae, 2021, 287, 110276.	3.6	8
34	Lipids in the Diet and the Fatty Acid Profile in Beef: A Review and Recent Patents on the Topic. Recent Patents on Food, Nutrition & Agriculture, 2012, 4, 123-133.	0.9	8
35	Identificação de variantes somaclonais em bananeiras 'Prata Anã', utilizando técnicas moleculares e citogenéticas. Ciencia E Agrotecnologia, 2009, 33, 448-454.	1.5	7
36	Genome-Wide Analyses of MADS-Box Genes in Humulus lupulus L. Reveal Potential Participation in Plant Development, Floral Architecture, and Lupulin Gland Metabolism. Plants, 2022, 11, 1237.	3.5	7

#	Article	lF	CITATIONS
37	Expression and validation of PvPGIP genes for resistance to white mold (Sclerotinia sclerotiorum) in common beans (Phaseolus vulgaris L.). Genetics and Molecular Research, 2016, 15, .	0.2	6
38	Transcriptional profiling of the AFL subfamily of B3-type transcription factors during the in vitro induction of somatic embryogenesis in the model legume Medicago truncatula. Plant Cell, Tissue and Organ Culture, 2019, 139, 327-337.	2.3	6
39	Organogênese em capÃŧulos florais e avaliação de caracterÃsticas anatômicas da folha de Gerbera jamesonii Adlam. Ciencia E Agrotecnologia, 2008, 32, 821-827.	1.5	6
40	In silico characterization of putative members of the coffee (Coffea arabica) ethylene signaling pathway. Genetics and Molecular Research, 2011, 10, 1277-1289.	0.2	6
41	Reference gene selection for quantitative PCR in liver, skeletal muscle, and jejunum of Bos indicus cattle. Revista Brasileira De Zootecnia, 2022, 51, .	0.8	6
42	Antioxidant System Differential Regulation is Involved in Coffee Ripening Time at Different Altitudes. Tropical Plant Biology, 2018, 11, 131-140.	1.9	5
43	Expression of candidate genes related to white mold resistance in common beans. Tropical Plant Pathology, 2019, 44, 483-493.	1.5	5
44	Expression of lipogenic genes in the muscle of beef cattle fed oilseeds and vitamin E. Agri Gene, 2020, 15, 100097.	1.9	5
45	Epigenetic Marks Associated to the Study of Nucleolar Dominance in Urochloa P. Beauv Plant Molecular Biology Reporter, 2020, 38, 380-393.	1.8	4
46	Expression of genes related to the regulation of muscle protein turnover in Angus and Nellore bulls1. Journal of Animal Science, 2016, 94, 1472-1481.	0.5	3
47	Differential gene expression in common bean during interaction with race 65 of Colletotrichum lindemuthianum. Tropical Plant Pathology, 2021, 46, 518-527.	1.5	3
48	A Microbial Fermentation Product Induces Defense-Related Transcriptional Changes and the Accumulation of Phenolic Compounds in <i>Glycine max</i>). Phytopathology, 2022, 112, 862-871.	2.2	3
49	Dose-response effect of prebiotic ingestion (\hat{l}^2 -glucans isolated from Saccharomyces cerevisiae) in diabetic rats with periodontal disease. Diabetology and Metabolic Syndrome, 2021, 13, 111.	2.7	3
50	Analysis of the SHP2 enhancer for the use of tissue specific activation tagging in Arabidopsis thaliana. Genetics and Molecular Biology, 2006, 29, 401-407.	1.3	2
51	Crosstalk Between Ethylene and Abscisic Acid During Changes in Soil Water Content Reveals a New Role for 1-Aminocyclopropane-1- Carboxylate in Coffee Anthesis Regulation. Frontiers in Plant Science, 2022, 13, 824948.	3.6	2
52	Aplicação de ácido giberélico (GA3) e anatomia da epiderme foliar visando à detecção de variantes somaclonais de bananeira Musa sp. Colla cv. Prata-anã (Musaceae). Acta Botanica Brasilica, 2010, 24, 47-52.	0.8	0
53	NUCLEAR DNA INTEGRITY OF CRYOPRESERVED EMBRYONIC AXES OF ANADENANTHERA COLUBRINE (VELL.) BRENAN. Acta Horticulturae, 2011, , 139-141.	0.2	O
54	IDENTIFICATION AND QUANTIFICATION OF DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH CITRUS BLIGHT (Citrus spp.). Ciencia E Agrotecnologia, 2015, 39, 32-38.	1.5	0

#	Article	IF	CITATIONS
55	How the environmental planning of the Universidade Federal de Lavras impacts higher education. E3S Web of Conferences, 2018, 48, 06004.	0.5	O
56	Genome-wide identification and characterization of genes involved in the acylsugar pathway in tomato. Plant Gene, 2021, 28, 100322.	2.3	O
57	Seleção, caracterização e clonagem dos genes fljB e groEL agonistas dos receptores de reconhecimento de padrão do sistema imune inato das aves. Pesquisa Veterinaria Brasileira, 2014, 34, 217-223.	0.5	O
58	Either embryogenesis or indirect organogenesis in sugarcane: Are we missing the key points?. Australian Journal of Crop Science, 2021, , 1119-1129.	0.3	0