
Jacek Mlynarski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3254646/publications.pdf Version: 2024-02-01

LACER MINNADSKI

#	Article	IF	CITATIONS
1	Catalysts Based on Amino Acids for Asymmetric Reactions in Water. Angewandte Chemie - International Edition, 2009, 48, 4288-4297.	13.8	216
2	Catalytic asymmetric aldol reactions in aqueous media. Chemical Society Reviews, 2008, 37, 1502.	38.1	210
3	Catalytic asymmetric aldol reactions in aqueous media – a 5 year update. Chemical Society Reviews, 2014, 43, 577-587.	38.1	159
4	Computational planning of the synthesis of complex natural products. Nature, 2020, 588, 83-88.	27.8	131
5	Structure Assignment, Total Synthesis, and Antiviral Evaluation of Cycloviracin B1. Journal of the American Chemical Society, 2003, 125, 13132-13142.	13.7	115
6	Organocatalytic synthesis of carbohydrates. Chemical Society Reviews, 2012, 41, 587-596.	38.1	87
7	Iron(II) and Zinc(II) Complexes with DesignedpyboxLigand for Asymmetric Aqueous Mukaiyama-Aldol Reactions. Journal of Organic Chemistry, 2007, 72, 2228-2231.	3.2	83
8	Direct Asymmetric Aldol Reactions Inspired by Two Types of Natural Aldolases: Water-Compatible Organocatalysts and Zn ^{II} Complexes. Journal of Organic Chemistry, 2012, 77, 173-187.	3.2	75
9	Conjunction of Chirality and Slow Magnetic Relaxation in the Supramolecular Network Constructed of Crossed Cyano-Bridged Co ^{II} –W ^V Molecular Chains. Journal of the American Chemical Society, 2012, 134, 16151-16154.	13.7	73
10	Direct Catalytic Asymmetric Aldol Reactions Assisted by Zinc Complex in the Presence of Water. Advanced Synthesis and Catalysis, 2007, 349, 1041-1046.	4.3	66
11	Electrochromic Bragg Mirror: ECBM. Advanced Materials, 2012, 24, OP265-9.	21.0	64
12	Efficient "on water―organocatalytic protocol for the synthesis of optically pure warfarin anticoagulant. Green Chemistry, 2011, 13, 1155.	9.0	58
13	Chiral zinc catalysts for asymmetric synthesis. Tetrahedron, 2015, 71, 1339-1394.	1.9	56
14	Zn(pybox)-Complex-Catalyzed Asymmetric Aqueous Mukaiyama-Aldol Reactions. Journal of Organic Chemistry, 2006, 71, 1317-1321.	3.2	52
15	Total Synthesis of the Antiviral Glycolipid Cycloviracin B1. Journal of the American Chemical Society, 2002, 124, 10274-10275.	13.7	51
16	Direct asymmetric aldol reaction of hydroxyacetone promoted by chiral tertiary amines. Tetrahedron Letters, 2009, 50, 1639-1641.	1.4	50
17	Direct Asymmetric Aldolâ€īfishchenko Reaction. European Journal of Organic Chemistry, 2006, 2006, 4779-4786.	2.4	49
18	A chiral iron(II)–pybox catalyst stable in aqueous media. Asymmetric Mukaiyama–aldol reaction. Tetrahedron Letters, 2006, 47, 5281-5284.	1.4	46

#	Article	IF	CITATIONS
19	The first example of a catalytic asymmetric aldol-Tishchenko reaction of aldehydes and aliphatic ketones. Tetrahedron Letters, 2004, 45, 7549-7552.	1.4	44
20	Aggregation-Induced Resonance Raman Optical Activity (AIRROA): A New Mechanism for Chirality Enhancement. Journal of Physical Chemistry B, 2016, 120, 4028-4033.	2.6	43
21	General switch in regioselectivity in the Mukaiyama aldol reaction of silyloxyfuran with aldehydes in aqueous solvents. Chemical Communications, 2012, 48, 11029.	4.1	41
22	Nicotinamide N-methyltransferase in endothelium protects against oxidant stress-induced endothelial injury. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119082.	4.1	41
23	Chiral Ytterbium Complex-Catalyzed Direct Asymmetric Aldol-Tishchenko Reaction: Synthesis ofanti-1,3-Diols. Chemistry - A European Journal, 2006, 12, 8158-8167.	3.3	39
24	Asymmetric Hydrosilylation of Ketones Catalyzed by Zinc Acetate with Hindered Pybox Ligands. Advanced Synthesis and Catalysis, 2014, 356, 591-595.	4.3	38
25	A Concise Synthesis of the Fully Functional Lactide Core of Cycloviracin B with Implications for the Structural Assignment of Related Glycolipids. Journal of the American Chemical Society, 2002, 124, 1168-1169.	13.7	37
26	Total Synthesis of Macroviracin D (BA-2836-4). Chemistry - A European Journal, 2004, 10, 2214-2222.	3.3	34
27	Application of the 2â€Nitrobenzyl Group in Glycosylation Reactions: A Valuable Example of an Arming Participating Group. European Journal of Organic Chemistry, 2013, 2013, 3988-3991.	2.4	34
28	Asymmetric Mukaiyama-Aldol Reaction in Aqueous Media Promoted by Zinc-Based Chiral Lewis Acids. Advanced Synthesis and Catalysis, 2005, 347, 521-525.	4.3	33
29	Direct asymmetric α-hydroxymethylation of ketones in homogeneous aqueous solvents. Tetrahedron Letters, 2010, 51, 4088-4090.	1.4	32
30	Algorithmic Discovery of Tactical Combinations for Advanced Organic Syntheses. CheM, 2020, 6, 280-293.	11.7	32
31	Zinc Acetateâ€Catalyzed Enantioselective Hydrosilylation of Ketones. Advanced Synthesis and Catalysis, 2015, 357, 3727-3731.	4.3	31
32	Chiral Amplification in Nature: Studying Cellâ€Extracted Chiral Carotenoid Microcrystals via the Resonance Raman Optical Activity of Model Systems. Angewandte Chemie - International Edition, 2019, 58, 8383-8388.	13.8	31
33	Direct asymmetric aldol-Tishchenko reaction of aliphatic ketones catalyzed by syn-aminoalcohol–Yb(iii) complexes. Chemical Communications, 2005, , 4854.	4.1	29
34	Implementation of Chirality into High-Spin Ferromagnetic Co ^{II} ₉ W ^V ₆ and Ni ^{II} ₉ W ^V ₆ Cyanido-Bridged Clusters. Crystal Growth and Design, 2015, 15, 3573-3581.	3.0	29
35	Zinc atalyzed Enantioselective Hydrosilylation of Ketones and Imines under Solventâ€Free Conditions. ChemCatChem, 2016, 8, 3575-3579.	3.7	29
36	Thermal switching between blue and red luminescence in magnetic chiral cyanido-bridged EuIII–WVcoordination helices. RSC Advances, 2013, 3, 1065-1068.	3.6	27

#	Article	IF	CITATIONS
37	Optical Activity and Dehydration-Driven Switching of Magnetic Properties in Enantiopure Cyanido-Bridged Co ^{II} ₃ W ^V ₂ Trigonal Bipyramids. Inorganic Chemistry, 2015, 54, 5784-5794.	4.0	27
38	Enantioselective Hydrosilylation of Imines Catalyzed by Chiral Zinc Acetate Complexes. Journal of Organic Chemistry, 2016, 81, 336-342.	3.2	27
39	Amine-Catalyzed Direct Aldol Reactions of Hydroxy- and Dihydroxyacetone: Biomimetic Synthesis of Carbohydrates. Journal of Organic Chemistry, 2014, 79, 5728-5739.	3.2	26
40	Application of 2-Substituted Benzyl Groups in Stereoselective Glycosylation. Journal of Organic Chemistry, 2015, 80, 770-780.	3.2	25
41	Diastereoselective Hydrosilylation of <i>N</i> â€(<i>tert</i> â€Butylsulfinyl)imines Catalyzed by Zinc Acetate. European Journal of Organic Chemistry, 2016, 2016, 1060-1065.	2.4	22
42	Synthesis of Yb Complexes with Aminoâ€Acidâ€Armed Ligands for Direct Asymmetric Tandem Aldol Reduction Reactions. European Journal of Organic Chemistry, 2008, 2008, 5553-5562.	2.4	21
43	Syntheses of chiral hybrid O,N-donor ligands for the investigation of lanthanide complex reactivities in direct aldol condensations. Tetrahedron: Asymmetry, 2005, 16, 1521-1526.	1.8	20
44	Synthetic routes to methyl 3-deoxy-aldulosonic acid methyl esters and their 2-deoxy isomers based on the Horner-Emmons and Peterson reaction of sugar lactones. Tetrahedron, 1999, 55, 2785-2794.	1.9	19
45	Prediction of ROA and ECD Related to Conformational Changes of Astaxanthin Enantiomers. Journal of Physical Chemistry B, 2015, 119, 12193-12201.	2.6	19
46	Self-Enhancement of Rotating Magnetocaloric Effect in Anisotropic Two-Dimensional (2D) Cyanido-Bridged Mn ^{II} –Nb ^{IV} Molecular Ferrimagnet. Inorganic Chemistry, 2017, 56, 2777-2783.	4.0	19
47	Asymmetric synthesis of warfarin and its analogues on water. Tetrahedron: Asymmetry, 2014, 25, 813-820.	1.8	17
48	The first synthesis of the ketene dithioacetals from sugar lactones: a convenient access to 3-ulosonic acids. Tetrahedron Letters, 1998, 39, 5425-5428.	1.4	16
49	Asymmetric <i>syn</i> â€Aldol Reaction of αâ€Hydroxy Ketones with Tertiary Amine Catalysts. European Journal of Organic Chemistry, 2013, 2013, 6917-6923.	2.4	16
50	Direct Aldol Reaction of Pyruvic Derivatives: Catalytic Attempt To Synthesize Ulosonic Acids. European Journal of Organic Chemistry, 2012, 2012, 2724-2727.	2.4	15
51	Synthetic approach to 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) α-disaccharides via a ketene dithioacetal. Tetrahedron: Asymmetry, 2000, 11, 3737-3746.	1.8	14
52	Recent Advances in the Chemistry of Bioactive 3-Deoxy-Ulosonic Acids. Studies in Natural Products Chemistry, 2005, , 419-482.	1.8	14
53	Application of the EF and GH Fragments to the Synthesis of Idraparinux. Journal of Organic Chemistry, 2017, 82, 12701-12714.	3.2	14
54	A computer algorithm to discover iterative sequences of organic reactions. , 2022, 1, 49-58.		14

#	Article	IF	CITATIONS
55	Synthesis of N-alkyl-N-methyl amino acids. Scope and limitations of base-induced N-alkylation of Cbz-amino acids. Tetrahedron: Asymmetry, 2008, 19, 970-975.	1.8	13
56	PK/PD studies on non-selective PDE inhibitors in rats using cAMP as a marker of pharmacological response. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1047-1059.	3.0	13
57	Zincâ€Catalyzed Asymmetric Hydrosilylation of Cyclic Imines: Synthesis of Chiral 2â€Arylâ€Substituted Pyrrolidines as Pharmaceutical Building Blocks. Advanced Synthesis and Catalysis, 2021, 363, 1317-1321.	4.3	13
58	Comparative Assessment of the New PDE7 Inhibitor – GRMS-55 and Lisofylline in Animal Models of Immune-Related Disorders: A PK/PD Modeling Approach. Pharmaceutical Research, 2020, 37, 19.	3.5	12
59	Multiplex Raman imaging of organelles in endothelial cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 255, 119658.	3.9	12
60	From Bare Metal Powders to Colloidally Stable TCO Dispersions and Transparent Nanoporous Conducting Metal Oxide Thin Films. Small, 2012, 8, 3806-3809.	10.0	11
61	Chemistry of Pyruvate Enolates: <i>anti</i> â€Selective Direct Aldol Reactions of Pyruvate Ester with Sugar Aldehydes Promoted by a Dinuclear Zinc Catalyst. Advanced Synthesis and Catalysis, 2015, 357, 2098-2104.	4.3	11
62	A Concise Organocatalytic Synthesis of 3â€Deoxyâ€2â€ulosonic Acids through <i>Cinchona</i> â€Alkaloidâ€Promoted Aldol Reactions of Pyruvate. European Journal of Organic Chemistry, 2016, 2016, 4394-4403.	2.4	11
63	Recent Advances in NMR Studies of Carbohydrates. Annual Reports on NMR Spectroscopy, 2016, , 185-223.	1.5	11
64	Asymmetric Synthesis of Cyclic Nitrones <i>via</i> Organocatalytic Michael Addition of Aldehydes to Nitroolefins and Subsequent Reductive Cyclization ChemistrySelect, 2017, 2, 2670-2676.	1.5	11
65	Iron-Catalyzed Asymmetric Nitro-Mannich Reaction. Journal of Organic Chemistry, 2017, 82, 11218-11224.	3.2	11
66	Total Asymmetric Synthesis of (+)â€Paroxetine and (+)â€Femoxetine. European Journal of Organic Chemistry, 2019, 2019, 6973-6982.	2.4	11
67	Zinc Acetate Catalyzed Enantioselective Reductive Aldol Reaction of Ketones. Advanced Synthesis and Catalysis, 2020, 362, 1532-1536.	4.3	11
68	A novel chemical synthesis of a 3-deoxy-?-arabino-heptulosonic acid 7-phosphate (DAHP) derivative and its 2-deoxy analogue. Carbohydrate Research, 1996, 295, 69-75.	2.3	11
69	A novel chemical synthesis of a 3-deoxy-d-arabino-heptulosonic acid 7-phosphate (DAHP) derivative and its 2-deoxy analogue. Carbohydrate Research, 1996, 295, 69-75.	2.3	10
70	Asymmetric aldol-Tishchenko reaction catalyzed by Yb-complexes with basic amino acid-derived ligands. Tetrahedron: Asymmetry, 2011, 22, 464-467.	1.8	10
71	Synthesis of <scp>l</scp> -Pyranosides by Hydroboration of Hex-5-enopyranosides Revisited. Journal of Organic Chemistry, 2016, 81, 7545-7556.	3.2	10
72	Solid supported Hayashi–JÃ,rgensen catalyst as an efficient and recyclable organocatalyst for asymmetric Michael addition reactions. Tetrahedron: Asymmetry, 2017, 28, 1765-1773.	1.8	10

#	Article	IF	CITATIONS
73	Chiral Amplification in Nature: Studying Cellâ€Extracted Chiral Carotenoid Microcrystals via the Resonance Raman Optical Activity of Model Systems. Angewandte Chemie, 2019, 131, 8471-8476.	2.0	10
74	Organocatalytic <i>syn</i> â€Aldol Reactions of Hydroxy Ketones with (<i>S</i>)â€lsoserinal: Asymmetric Synthesis of 6â€Deoxyâ€1,5â€iminohexitols and Related Compounds. European Journal of Organic Chemistry, 2013, 2013, 1296-1305.	2.4	9
75	Tertiary Amine Promoted Asymmetric ÂAldol Reaction of Aldehydes. European Journal of Organic Chemistry, 2015, 2015, 5075-5078.	2.4	9
76	Unmodified Primary Amine Organocatalysts for Asymmetric Michael Reactions in Aqueous Media. European Journal of Organic Chemistry, 2015, 2015, 6047-6051.	2.4	9
77	Total synthesis of pipecolic acid and 1- <i>C</i> -alkyl 1,5-iminopentitol derivatives by way of stereoselective aldol reactions from (<i>S</i>)-isoserinal. Organic and Biomolecular Chemistry, 2018, 16, 1118-1125.	2.8	9
78	Visibleâ€Lightâ€Mediated αâ€Oxygenation of 3â€(<i>N</i> , <i>N</i> â€Dimethylaminomethyl)â€Indoles to Aldeh European Journal of Organic Chemistry, 2018, 2018, 6624-6628.	ydes. 2.4	9
79	Intramolecular Tandem Seleno-Michael/Aldol Reaction: A Simple Route to Hydroxy Cyclo-1-ene-1-carboxylate Esters. Journal of Organic Chemistry, 2018, 83, 11269-11277.	3.2	9
80	Synthesis of 3-Deoxy-α-d-manno-oct-2-ulosonic Acid Glycoside (Kdo) and Its 2-Deoxy Analogue: A Hornerâ^'Emmons Approachâ€. Organic Letters, 1999, 1, 1709-1711.	4.6	8
81	αâ€Regioselective Aqueous Mukaiyama Aldol Reaction of 2â€(Trimethylsilyloxy)furan with Pyruvates. European Journal of Organic Chemistry, 2016, 2016, 2897-2901.	2.4	8
82	Convenient preparation of α- and β-glycosides of novel isomeric 3-deoxy-hept-2-ulosaric acids diesters. Tetrahedron, 1997, 53, 10643-10658.	1.9	7
83	Biomimetic Direct Aldol Reaction of Pyruvate Esters with Chiral Aldehydes. Advanced Synthesis and Catalysis, 2013, 355, 281-286.	4.3	7
84	Biomimetic <i>syn</i> â€Aldol Reaction of Dihydroxyacetone Promoted by Waterâ€Compatible Catalysts. European Journal of Organic Chemistry, 2013, 2013, 7484-7487.	2.4	7
85	Additions and corrections published 30th October 2013 to 15th July 2014. Chemical Society Reviews, 2014, 43, 6470.	38.1	7
86	Influence of inflammatory disorders on pharmacokinetics of lisofylline in rats: implications for studies in humans. Xenobiotica, 2019, 49, 1209-1220.	1.1	6
87	Macrolide Core Synthesis of Calysolin IX Using an Intramolecular Glycosylation Approach. European Journal of Organic Chemistry, 2020, 2020, 47-51.	2.4	6
88	NMR of carbohydrates. Nuclear Magnetic Resonance, 2013, , 383-419.	0.2	5
89	Organocatalytic Synthesis of Higher-Carbon Sugars: Efficient Protocol for the Synthesis of Natural Sedoheptulose and <scp>d</scp> - <i>Glycero</i> - <scp>l</scp> - <i>galacto</i> -oct-2-ulose. ChemistryOpen, 2015, 4, 717-721.	1.9	5
90	Synthesis of 2-Keto- <scp>d</scp> - and <scp>l</scp> -gluconic Acid via Stereoselective Direct Aldol Reactions. Journal of Organic Chemistry, 2016, 81, 6112-6117.	3.2	5

#	Article	IF	CITATIONS
91	Asymmetric total synthesis of (+)-asenapine. Organic and Biomolecular Chemistry, 2019, 17, 3225-3231.	2.8	5
92	Synthesis and Application of Uronic Acids. Current Organic Chemistry, 2014, 18, 1913-1934.	1.6	5
93	Asymmetric heteroâ€Dielsâ€Alder Reaction of trans â€1â€Methoxyâ€3â€trimethylsilyloxyâ€butaâ€1,3â€diene Ca Zinc Complexes. European Journal of Organic Chemistry, 2020, 2020, 5388-5393.	atalyzed by	^y 4
94	Asymmetric Epoxidation of Enones Promoted by Dinuclear Magnesium Catalyst. Advanced Synthesis and Catalysis, 2021, 363, 4247-4255.	4.3	3
95	NMR of carbohydrates. Nuclear Magnetic Resonance, 2015, , 407-430.	0.2	3
96	Stereocontrolled synthesis of oleanolic saponin ladyginoside A isolated from Ladyginia bucharica. Carbohydrate Research, 2018, 458-459, 35-43.	2.3	2
97	Lewis Acidâ€Catalyzed Stereoselective αâ€Addition of Chiral Aldehydes to Cyclic Dienol Silanes: Aqueous Synthesis of Chiral Butenolides. Advanced Synthesis and Catalysis, 2020, 362, 667-678.	4.3	2
98	Asymmetric Aldol Reaction of Pyruvate Promoted by Chiral Tertiary Amines. ChemistrySelect, 2020, 5, 7370-7374.	1.5	1
99	Propargylation of CoQ0 through the Redox Chain Reaction. Journal of Organic Chemistry, 2022, 87, 683-692.	3.2	1
100	The First Example of a Catalytic Asymmetric Aldol-Tishchenko Reaction of Aldehydes and Aliphatic Ketones ChemInform, 2005, 36, no.	0.0	0
101	Chapter 7. Aqueous Phase Asymmetric Catalysis. RSC Green Chemistry, 0, , 206-236.	0.1	0
102	Front Cover Picture: Zinc Acetate Catalyzed Enantioselective Reductive Aldol Reaction of Ketones (Adv. Synth. Catal. 7/2020). Advanced Synthesis and Catalysis, 2020, 362, 1405-1405.	4.3	0
103	Chapter 10. NMR of carbohydrates. Nuclear Magnetic Resonance, 2014, , 401-422.	0.2	0